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Abstract
Background The swift and accurate identification of motor unit spike trains (MUSTs) from surface electromyography 
(sEMG) is essential for enabling real-time control in neural interfaces. However, the existing sEMG decomposition 
methods, including blind source separation (BSS) and deep learning, have not yet achieved satisfactory performance, 
due to high latency or low accuracy.

Methods This study introduces a novel real-time high-density sEMG (HD-sEMG) decomposition algorithm named 
ML-DRSNet, which combines multi-label learning with a deep residual shrinkage network (DRSNet) to improve 
accuracy and reduce latency. ML-DRSNet was evaluated on a public sEMG dataset and the corresponding MUSTs 
extracted via the convolutional BSS algorithm. An improved multi-label deep convolutional neural network 
(ML-DCNN) was also evaluated and compared against a conventional multi-task DCNN (MT-DCNN). These networks 
were trained and tested on various window sizes and step sizes.

Results With the shortest window size (20 data points) and step size (10 data points), ML-DRSNet significantly 
outperformed both ML-DCNN (0.86 ± 0.18 vs. 0.71 ± 0.24, P < 0.001) and MT-DCNN (0.86 ± 0.18 vs. 0.66 ± 0.16, P < 0.001) 
in decomposition precision. Moreover, ML-DRSNet demonstrated a notably lower latency (15.15 ms) compared to 
ML-DCNN (69.36 ms) and MT-DCNN (76.96 ms), both of which demonstrated reduced latency relative to BSS-based 
decomposition methods.

Conclusions The proposed ML-DRSNet and the improved ML-DCNN algorithms substantially enhance both 
the accuracy and real-time performance in decomposing MUSTs, establishing a technical foundation for neuro-
information-driven motor intention recognition and disease assessment.

Keywords Real-time decomposition, Motor unit spike trains, High-density surface electromyography, Multi-label 
learning, Deep residual shrinkage network
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Background
The implementation of neural interfaces, whether in 
the central or peripheral nervous system, is crucial for 
comprehending motor neurophysiology and develop-
ing human-machine interaction systems. Neural inter-
faces aim to connect human neural cells and decode 
their activities to interpret the neural code for cognitive 
or sensorimotor tasks [1, 2]. Non-invasive surface elec-
tromyography (sEMG)-based neural interfaces have the 
potential to surpass current solutions in terms of viability 
and information-transfer rate [3–5]. This type of neural 
interface decodes electrical signals from skeletal muscles 
(i.e., EMG) to identify spinal motor neuron activity. To 
extract neural information from sEMG, it is essential to 
identify the neural encoding behind muscle activation 
through sEMG decomposition, which separates the sig-
nals into motor unit (MU) spike trains (MUSTs) and MU 
action potential trains (MUAPTs) [6, 7]. sEMG decom-
position not only aids in decoding motor commands but 
also facilitates more precise motor intention recogni-
tion [8]. It offers superior performance over traditional 
EMG control systems, paving the way for more accurate 
and intuitive neural interfaces [9]. Consequently, sEMG 
decomposition exhibits extensive applications in motor 
intention recognition and the control of rehabilitation 
devices.

In recent years, the use of two-dimensional flexible 
electrode arrays has enabled high-density sEMG (HD-
sEMG) recording from dozens to hundreds of channels, 
providing rich spatiotemporal information and prompt-
ing the development of sEMG decomposition algorithms 
[10]. Blind source separation (BSS) algorithms, such as 
convolution kernel compensation (CKC) and indepen-
dent component analysis (ICA), have been developed 
and validated to achieve accurate sEMG decomposi-
tion [11]. Given the promising applications of sEMG 
in various research fields, developing robust real-time 
decomposition methods is crucial. Online sEMG decom-
position using BSS algorithms involves offline training to 
determine separation vectors (i.e., MU filters) and their 
subsequent real-time application to short segments of 
HD-sEMG [12, 13]. For example, Chen et al. [14] pro-
posed a real-time sEMG decomposition method based on 
the CKC algorithm. It accurately identifies 12 ± 2 MUSTs 
during hand movements from 200 ms signal segments, 
with a processing time of approximately 250 ms for sig-
nal recording and computation. Zhao et al. [12] intro-
duced an online sEMG decomposition method using 
the progressive fast ICA peel-off algorithm, achieving an 
average delay of 84 ± 28 ms for decomposing one-second 
signal segments in real time. Despite significant strides 
made by BSS-based methods in real-time decomposition, 
these approaches require extending sEMG segments with 
delayed signals to transform convolution-mixed sEMG 

into linear instantaneous mixed signals [15]. Whitening 
transformation is used to enhance convergence by reduc-
ing the number of unknowns and speeding up separation 
vector estimation [16]. However, spatial whitening may 
amplify noise, complicating neural encoding identifica-
tion [15, 17]. Although preprocessing steps like extending 
and whitening reduce offline training complexity, they 
introduce delays that may undermine real-time perfor-
mance in applications such as neural interfaces [14, 18]. 
Additionally, BSS algorithms are limited by current signal 
processing knowledge, potentially overlooking complex 
relationships in the high-dimensional sEMG space. These 
limitations hinder the achievement of more accurate 
online HD-sEMG decomposition. Therefore, methods 
that can directly decode raw sEMG signals for accurate 
real-time sEMG decomposition are needed.

With the rapid development of computer technology 
and artificial intelligence, deep learning has emerged as 
a powerful tool for addressing various inverse problems, 
including the decomposition of signals such as HD-
sEMG [19, 20]. It often outperforms manually designed 
algorithms (e.g., BSS) in many applications. Recent 
research has explored integrating deep learning algo-
rithms in both offline training and online application for 
real-time sEMG decomposition. Urh et al. [21] compared 
the capabilities of a dense neural network, a long short-
term memory network, and a deep convolutional neural 
network (DCNN) in identifying MUSTs from HD-sEMG. 
Results indicated that the DCNN demonstrated higher 
accuracy and greater resistance to noise. Although the 
study demonstrated the potential of deep learning in 
HD-sEMG decomposition, it still relied on preprocessing 
steps like extending and whitening. Clarke et al. [20] used 
a gated recurrent unit network for sEMG decomposition, 
validating its accuracy in extracting innervation pulse 
trains using both simulation and experimental data. The 
network processed a one-second HD-sEMG segment in 
67 ms. Wen et al. [22] employed the CKC algorithm to 
identify MUSTs from HD-sEMG, which were then used 
to train DCNNs (SO-DCNN and MO-DCNN). MO-
DCNN required approximately 48 ms to process each 
60 ms signal segment. These studies collectively sug-
gest that training a deep learning model offline for real-
time sEMG decomposition is a faster and more accurate 
approach. However, the application of deep learning in 
sEMG decomposition remains relatively limited. Con-
sidering the real-time accuracy requirements in applica-
tions like neural interfaces, further optimization of these 
algorithms is needed. This involves shortening the length 
of input signal segments and reducing processing time to 
enhance decomposition performance.

Currently, multi-label learning has started to be applied 
in bioelectrical signal processing [23, 24]. By leverag-
ing the correlations among different labels to extract 
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task-relevant features, it has opened new possibilities 
for more in-depth signal analysis. In HD-sEMG decom-
position, where MU discharge patterns exhibit synergis-
tic effects [25], multi-label learning could improve the 
robustness of simultaneously extracting multiple MUSTs 
from each sEMG segment. However, research on HD-
sEMG decomposition using multi-label learning is still 
limited. Additionally, attention mechanisms have also 
gained prominence in deep learning. The deep residual 
shrinkage network (DRSNet) is a feature learning method 
designed for noisy and redundant data. It adapts to the 
characteristics of input data to perform adaptive denois-
ing, and increases the weights of task-relevant feature 
channels [26]. In sEMG decomposition, DRSNet can uti-
lize a small attention network integrated into the residual 
module to automatically set soft thresholds for each HD-
sEMG segment, effectively processing signals with vary-
ing noise or redundancy. It extracts high-dimensional 
features of each segment and captures deep relationships 
among feature channels, accurately identifying MUSTs 
from HD-sEMG while avoiding gradient vanishing and 
exploding issues.

Therefore, this study assumes that multi-label learning 
can enhance the robustness and precision of HD-sEMG 
decomposition by recognizing the interrelationships 
among motor unit discharge patterns. Additionally, it 
hypothesizes that the DRSNet can effectively handle 
noisy and redundancy in HD-sEMG with its adaptive 
denoising and attention mechanisms, improving decom-
position performance. This study proposes a novel real-
time HD-sEMG decomposition method combining 
multi-label learning and DRSNet (ML-DRSNet) to more 
accurately and rapidly identify MUSTs from raw HD-
sEMG. Additionally, a multi-label DCNN (ML-DCNN) 
is also proposed for sEMG decomposition. The primary 
contributions of this study are as follows:

(1) Transformed HD-sEMG decomposition into a 
multi-label binary classification problem using two 
DCNN frameworks (ML-DRSNet and ML-DCNN), 
validating the feasibility and effectiveness of multi-label 
learning in recognizing MU discharges.

(2) ML-DRSNet and ML-DCNN accurately iden-
tified MU discharges with reduced delays, achieved 
through shorter input window sizes and processing 
times, enhancing the real-time capabilities of HD-sEMG 
decomposition.

(3) ML-DRSNet and ML-DCNN demonstrated higher 
decomposition precision compared to existing DCNN 
methods, improving the overall accuracy of HD-sEMG 
decomposition.

Methods
Experimental HD-sEMG dataset
In this study, the public dataset from [27] was used to 
validate the proposed HD-sEMG decomposition method. 
The dataset includes HD-sEMG recordings from the 
dominant leg of 18 physically active male participants 
(average age: 29.4 ± 7.9 years, height: 180 ± 7  cm, body 
mass: 76 ± 8 kg, and BMI: 23.6 ± 2.7 kg/m2). Participants 
performed two types of isometric contraction tasks at 
three different intensities. In the first task, participants 
lied down on a custom force platform (TRE-50 K, Dacell, 
Korea) with a torque sensor, performing three plan-
tarflexion contractions with fully extended knees and a 
10° ankle joint angle (0° represents the foot perpendicu-
lar to the lower leg) at 10%, 30%, and 50% of their peak 
torque (maximum voluntary contraction, MVC). In the 
second task, participants stood on a force plate, randomly 
performing balance and isometric heel raises, including 
maintaining a standard heel height (6 cm), a neutral foot 
position, or internal rotation. HD-sEMG signals were 
collected from the soleus, the gastrocnemius medialis 
(GM), and the lateralis muscles using two-dimensional 
adhesive grids with either 8 × 4 electrodes (10 mm inter-
electrode distance) or 13 × 5 electrodes (with one corner 
electrode absent; 8  mm interelectrode distance). The 
signals were recorded in monopolar mode, band-pass 
filtered from 10 to 900  Hz, and digitized at a sampling 
rate of 2048 Hz using a multi-channel acquisition system 
(EMG-Quattrocento; 400-channel EMG amplifier, OTBi-
olelettronica, Italy).

The dataset also includes HD-sEMG decomposition 
results obtained using convolutional BSS (CBSS). After 
excluding noisy channels, HD-sEMG signals were band-
pass filtered with second-order Butterworth filters (20 
to 750  Hz). The DEMUSE software (version 4.9; The 
University of Maribor, Slovenia) was used to decompose 
HD-sEMG with CBSS. This algorithm has been validated 
on both simulation and experimental data for identify-
ing MUSTs across various contraction intensities [15, 
28]. Following the automated identification of MU dis-
charges, experienced operators visually inspected and 
manually edited all identified MUSTs [29, 30]. Only MUs 
with a pulse-to-noise ratio (PNR) greater than 30 dB were 
retained, ensuring a sensitivity over 90% and a false-pos-
itive rate below 2% [31, 32]. This ensures that the MUSTs 
in this dataset are highly reliable and serve as an excel-
lent benchmark for evaluating the decomposition per-
formance in this study. More detailed descriptions of the 
dataset and related analysis results can be found in [27].

In this study, a subset containing HD-sEMG from the 
GM muscle during the isometric plantarflexion task, 
along with the corresponding MUSTs, was selected from 
the public dataset to evaluate the proposed decomposi-
tion method. Due to the absence of HD-sEMG data for 
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the isometric plantarflexion task, participants S14 and 
S15 were excluded from the analysis.

Data pre-processing
Figure 1 shows a schematic summarizing the data pipe-
line for the proposed decomposition algorithm. Given 
the stochastic nature of sEMG signals, a sliding window 
with a specified window size and step size was used to 
segment the HD-sEMG signals into small segments 
(Fig. 2). These segments were then used as inputs for the 
HD-sEMG decomposition models to identify MUSTs 
(Fig. 2).

The sliding window length is denoted as the window 
size W, with a width equal to the number of channels 
C in the sEMG signals (64 in this study). The sliding 
distance, or increment, is represented by the step size S
. The input to the HD-sEMG decomposition models is 
expressed as a C × W matrix, as shown in Eq. (1). Each 
element is defined as shown in Eq. (2). The model output 
is a 1 × M matrix, as shown in Eq. (3), where each ele-
ment is expressed in Eq. (4).
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Where X represents an HD-sEMG segment, with n 
being the segment index (n = 1, 2, 3,…), x is the raw HD-
sEMG signal, and the subscript c denoting the channel 
index (ranging from 1 to C). Y is a binary matrix con-
taining the discharge information for

multiple MUs, while y is the binary MUST vec-
tor, where each element is 0 (no discharge) and 1 (dis-
charge). M represents the total number of MUs extracted 
by CBSS, with the subscript m denoting the MU index 
(ranging from 1 to M).

Finally, HD-sEMG segments and their correspond-
ing MUST labels were stored for training, validation, 
and testing of the decomposition networks. The data 

Fig. 1 Block diagram of the data processing pipeline for ML-DRSNet training, validation, and testing. The MUSTs are extracted using the unsupervised 
CBSS algorithm from filtered, extended, and whitened HD-sEMG signals. The raw data is segmented with a sliding window to generate paired HD-sEMG 
segments and MUST labels. A five-fold cross-validation strategy is employed to divide the data segments into training, validation, and testing sets. All 
segments are z-score normalized using the mean and standard deviation of the training set before being input to the network. The binary cross-entropy 
loss between the predictions and the MUST labels is backpropagated to update the network. The model achieving the lowest validation loss is selected 
and evaluated on the testing set to assess its performance
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preprocessing was performed using MATLAB 2022b 
(The Mathworks, Inc., Natick, MA, USA) and Python 3.8 
(Python Software Foundation, Delaware, USA).

Network structures of ML-DCNN and ML-DRSNet
To evaluate the feasibility and effectiveness of multi-label 
learning in real-time HD-sEMG decomposition, this 
study first proposed the ML-DCNN, inspired by the work 
in [22]. Subsequently, a new method combining multi-
label learning with DRSNet (ML-DRSNet) was intro-
duced to identify MUSTs from HD-sEMG. This section 

details the structures of the ML-DCNN and ML-DRSNet 
networks.

Network structure of ML-DCNN
ML-DCNN consists of four convolutional layers, two 
max-pooling layers, three dropout layers (with a drop-
out rate of 0.5), and two fully connected (FC) layers, as 
shown in Fig. 3a. The four convolutional layers have 128, 
128, 128, and 64 output channels, respectively, and utilize 
rectified linear unit (ReLU) activation functions. The first 
FC layer outputs 256 features, while the final FC layer 

Fig. 2 A schematic diagram illustrating the sliding window for data segmentation and input-output data of the network. (a) Input data: HD-sEMG signals 
are segmented using a sliding window with a specified window size (e.g., 20, 60, 100, or 140 data points) and step size (e.g., 10, 20, 30, 40, or 50 data 
points). (b) Output data: A one-dimensional binary vector where each binary label corresponds to a MU, with 1 indicating a MU discharge and 0 indicat-
ing no discharge
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employs a sigmoid function. The number of output labels 
is dynamically determined by the number of MUs in the 
training dataset.

Network structure of ML-DRSNet
ML-DRSNet (Fig.  3b) is built on the deep residual net-
work [26]. The residual building unit (RBU) is its core 
component, which consists of two batch normalization 
(BN) layers, two ReLU functions, two convolutional lay-
ers, and an identity shortcut. The identity shortcut helps 
learn residual representations between the input and 
output of RBU, improving network convergence speed 
and prediction accuracy. Expanding on the RBU, a com-
pact sub-network incorporating soft thresholding and an 
attention mechanism forms the residual shrinkage build-
ing unit with channel-wise (RSBU-CW). Soft threshold-
ing, a pivotal technique in signal denoising [33, 34], helps 
mitigate gradient vanishing and exploding issues during 
training.

To minimize the impact of noise-related features in 
HD-sEMG on MUST identification, an attention mecha-
nism adaptively sets shrinkage thresholds for each chan-
nel of the feature map. This attention network comprises 
two FC layers, a BN layer, a ReLU function, and a sig-
moid function. The feature map output from the final 
BN layer in the RBU undergoes an absolute operation, 
global average pooling (GAP), and flattening into a one-
dimensional vector. The resulting vector is then passed 
through two FC layers, with a BN layer and a ReLU func-
tion in between. Finally, the sigmoid function scales the 
output to the (0, 1) range, ensuring positive and reason-
able thresholds and avoiding a feature map with all-zero 
output.

In this study, ML-DRSNet consists of a convolutional 
layer (64 output channels, 3 × 3 kernel size, padding of 1), 
a BN layer, a ReLU function, eight RSBU-CW blocks, a 
GAP layer, a flatten layer, a FC layer, and a sigmoid func-
tion. The RSBU-CW blocks have output channels of 64, 
64, 128, 128, 256, 256, 512, and 512, respectively. The final 
FC layer dynamically outputs a number of labels deter-
mined by the number of MUs in the training dataset.

Model training, validation and testing
PyTorch (version 1.11.0) [35] was employed as the pri-
mary deep learning framework, with ML-DRSNet and 
ML-DCNN implemented in a Python 3.8 environment 
(Ubuntu 20.04, CUDA 11.3). HD-sEMG decomposition 
was framed as a multi-label binary classification task, 
where binary cross-entropy (BCE) loss was used to quan-
tify the difference between predicted and true labels. 
The BCE loss was computed for each MU, and network 
parameters were optimized by minimizing the average 
BCE loss to enhance the accuracy of sEMG decomposi-
tion through coordinated MU discharges. The Adam 
optimizer [36] with an adaptive learning rate of 10− 4 and 
a weight decay of 10− 6 was employed.

A five-fold cross-validation strategy was used to assess 
the performance of sEMG decomposition networks, 
ensuring robust evaluation and minimizing variability. 
Separate decomposition models were developed for each 
subject at three contraction intensities, with sEMG seg-
ments divided into five exclusive subsets for training, val-
idation, and testing. Three subsets were used for training, 
one for validation, and one for testing in each fold. This 
process was repeated five times, with each subset serv-
ing as the test set once. The average performance metrics 

Fig. 3 Network architectures of (a) ML-DCNN, and (b) ML-DRSNet. RSBU-CW: residual shrinkage building unit with channel-wise
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across these five tests represented the overall perfor-
mance of the HD-sEMG decomposition model.

Before training, the mean and standard deviation 
of each channel in the training set were calculated for 
z-score normalization across all subsets, facilitating 
model convergence. Each training session consisted of 
100 epochs with a batch size of 64. The model with the 
lowest average validation loss was selected as the final 
model and was evaluated on the test set. Model training, 
validation, and testing were conducted on a PC equipped 
with an Intel Xeon Platinum 8358P CPU, NVIDIA RTX 
3090 GPU (24GB), and 80 GB of RAM.

Comparative analysis
To validate the feasibility and robustness of multi-label 
learning in HD-sEMG decomposition, this study imple-
mented the DCNN provided by Wen et al. [22] using 
PyTorch (version 1.11.0), referred to as MT-DCNN. The 
effects of window size, step size, and contraction inten-
sity on decomposition accuracy and time efficiency of 
ML-DRSNet were investigated. Additionally, a compara-
tive analysis was conducted to assess the accuracy and 
real-time performance of ML-DRSNet, ML-DCNN, and 
MT-DCNN in HD-sEMG decomposition.

Effects of window size, step size, and contraction intensity on 
ML-DRSNet
The window size determines the length of the signal fed 
into ML-DRSNet for processing. On one hand, the win-
dow size was chosen based on the average duration of 
multiple MUAPs (approximately 10 ms) and the electro-
mechanical delay of human muscles (225 ± 50 ms) [15, 
37], for both identification and real-time purposes. On 
the other hand, as described in Eqs.  (1), (2), (3) and (4), 
ML-DRSNet requires sEMG at time (n × S + W/2) 
to predict the discharge activity of MUs at time n × S
, resulting in a latency of half the window size (Fig.  2). 
Consequently, reducing the window size leads to a 
decrease in latency. In this study, four window sizes were 
selected: 20, 60, 100, and 140 data points, correspond-
ing to 10, 29, 49, and 68 ms at a sampling frequency of 
2048 Hz, respectively.

The step size refers to the sliding distance or increment 
of the sliding window used to segment HD-sEMG sig-
nals, which determines the overlap or difference between 
adjacent signal segments (Fig.  2). It directly influences 
the prediction frequency (cycle time) used for control 
purposes, as a smaller step size leads to more frequent 
predictions (higher prediction frequency), while a larger 
step size results in fewer predictions (lower prediction 
frequency). Five step sizes were selected: 10, 20, 30, 40, 
and 50 data points, corresponding to 5, 10, 15, 20 and 24 
ms at a sampling frequency of 2048 Hz. These step sizes 
result in prediction frequencies of 205, 102, 68, 51, and 

41 Hz, respectively. This ensures that the prediction fre-
quency exceeds the typical MU discharge frequencies 
(3–100  Hz) [38–40] to capture high-frequency compo-
nents effectively.

Furthermore, this study assessed the performance of 
ML-DRSNet at 10%, 30%, and 50% MVC, respectively, to 
evaluate the impact of contraction intensity on decompo-
sition accuracy.

Comparison among ML-DRSNet, ML-DCNN, and MT-DCNN
The optimal window sizes and step sizes for maximiz-
ing decomposition performance were first determined 
for ML-DRSNet, ML-DCNN, and MT-DCNN individu-
ally. The decomposition accuracy of the three models 
was then compared at their optimal settings to assess 
the robustness of multi-label learning, particularly when 
integrated with DRSNet, for sEMG decomposition. 
Additionally, the decomposition accuracy of the models 
was also compared at the shortest window size (20 data 
points) and step size (10 data points) to evaluate their 
performance under constrained conditions.

Evaluation criteria
The performance of the decomposition models was eval-
uated based on accuracy and time efficiency.

Decomposition accuracy
The MUSTs obtained from the decomposition mod-
els were compared with those extracted using the CBSS 
algorithm (i.e., MUST labels). The precision (Eq. 5), sen-
sitivity (Eq. 6), F1-score (Eq. 7), and miss rate (Eq. 8) were 
calculated for all MUs.

 Precision = TP
TP+FP  (5)

 Sensitivity = TP
TP+FN  (6)

 F1 score = 2× precision× sensitivity
precision+sensitivity  (7)

 Miss Rate = FN
FN+TP  (8)

Where TP represents the number of correctly identi-
fied discharges, FN represents the number of missed 
discharges, and FP represents the number of incorrect 
identifications. The miss rate was used to evaluate the 
performance of decomposition models in identifying 
individual MUs.

This study counted the number of correctly identified 
MUs under the criteria of miss rate < 0.1. If the miss rate 
of a MU is below 0.1, the model is considered to have 
correctly identified that MU. The decomposition accu-
racy was also evaluated by calculating the proportion of 
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correctly identified MUs relative to the total number of 
MUs used in training.

Time efficiency
Time efficiency was assessed based on training time 
and prediction time, which quantify the computational 
complexity [22, 41]. Training time is defined as the time 
required for one epoch, including training, validation, 
and testing, as well as parameter updates, measured in 
seconds per epoch (s/epoch).

Prediction time was defined as the time required to 
make a prediction for one sEMG window (segment) dur-
ing testing, measured in milliseconds per window (ms/
window). The prediction time, combined with the whole 
window size of input data, was used to evaluate the real-
time performance of the models. In this study, the train-
ing and prediction times for the three decomposition 
models were measured using the data from subject S10 at 
10% MVC, for reference.

Statistical analysis
Given that the accuracy metrics may not meet the 
assumptions of normal distribution and homogeneity of 
variance, the Friedman test was applied to statistically 
compare the decomposition accuracy (F1-score, preci-
sion, sensitivity, and the number of correctly identified 
MUs) of ML-DRSNet, ML-DCNN, and MT-DCNN. To 
control for errors from multiple comparisons, the Wil-
coxon-Nemenyi-McDonald-Thompson post hoc test was 
performed. The significance level was set at 0.05. All sta-
tistical analyses were conducted using OriginPro 2024b 
(OriginLab, Northampton, MA, USA).

Results
HD-sEMG decomposition with CBSS algorithm
In this study, the experimental HD-sEMG data-
set involved 16 participants with a total of 738 MUs 
(15.38 ± 8.32) extracted using the CBSS algorithm, achiev-
ing an average PNR of 38.74 ± 2.52 dB. At 10% MVC, the 
average number of MUs was 18.25 ± 7.86 (range: 2 to 30) 
with a PNR of 38.53 ± 3.04 dB. At 30% MVC, the average 
number of MUs was 17.06 ± 8.16 (range: 4 to 31) with a 
PNR of 38.78 ± 2.16 dB. At 50% MVC, the average num-
ber of MUs was 10.81 ± 7.37 (range: 2 to 22) with a PNR 
of 38.90 ± 2.42 dB. The average number of MUs, PNR, 

and discharge frequency for each contraction intensity is 
summarized in Table 1.

Effects of window size, step size, and contraction intensity 
on ML-DRSNet
Decomposition accuracy
This study shows the significant effect of window size and 
step size on the decomposition accuracy of ML-DRSNet, 
including sensitivity, precision, F1-score, and the num-
ber of correctly identified MUs (Fig.  4; Table  2). When 
the step size is 30, 40, or 50, the decomposition accu-
racy decreases with increasing window size. In contrast, 
for step sizes of 10 and 20, the decomposition accuracy 
increases initially and then decreases as the window size 
grows. When the window size is 20 data points, increas-
ing the step size from 10 to 50 data points improves 
decomposition accuracy (Fig.  4; Table  2). Conversely, 
with window sizes of 60, 100, and 140 data points, 
increasing the step size results in a continuous decline in 
accuracy (Fig. 4; Table 2). ML-DRSNet performs.

best with a window size of 20 data points and a step size 
of 50 data points, achieving a sensitivity of 0.84 ± 0.25, 
precision of 0.93 ± 0.12, and F1-score of 0.85 ± 0.23. With 
a miss rate below 0.1, ML-DRSNet correctly identified an 
average of 10.90 ± 10.51 MUs, representing 70.87% of the 
average MUs identified using CBSS (Fig. 4; Table 2).

Moreover, the decomposition accuracy progressively 
decreases as the contraction intensity increases from 10 
to 50% MVC (Fig. 5; Table 3). This trend may be attrib-
uted to the increased overlap among MUAPs at higher 
contraction intensities, which makes it more challenging 
to accurately identify and distinguish different MU fea-
tures from sEMG signals.

Time efficiency
The average training time of ML-DRSNet is 
198.43 ± 126.19  s/epoch (range: 87.43–427.53  s/epoch; 
Table 4). The training time is inversely related to step 
size, with larger step sizes reducing training time due to 
fewer data being used for training. No explicit correlation 
was observed between training time and window size.

The prediction time is virtually unaffected by both 
window size and step size. The average prediction time 
is 5.39 ± 0.12 ms/window (Table  4). With an optimal 
window size of 9.76 ms (20 data points at a sampling 
frequency of 2048  Hz), the total decomposition time 
required is only 15.15 ms.

Comparison among ML-DRSNet, ML-DCNN, and MT-DCNN
To compare the performance of the three decomposition 
models, this study summarized the optimal window size 
and step size combinations for ML-DRSNet, ML-DCNN, 
and MT-DCNN. ML-DRSNet demonstrates superior 
performance with a window size of 20 data points and 

Table 1 Characteristics of the MUs extracted using the CBSS 
algorithm across different contraction intensities
Intensity Number of MUs PNR (dB) Discharge frequency (Hz)
10% MVC 18.25 ± 7.86 38.53 ± 3.04 7.32 ± 1.19 (3.43–10.44)
30% MVC 17.06 ± 8.16 38.78 ± 2.16 9.30 ± 1.86 (3.73–14.87)
50% MVC 10.81 ± 7.37 38.90 ± 2.42 10.83 ± 2.45 (4.53–17.65)
Average 15.38 ± 8.32 38.74 ± 2.52 8.87 ± 2.27 (3.43–17.65)
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Table 2 Decomposition accuracy of ML-DRSNet for different window sizes and step sizes
Window size
(data points)

Step size
(data points)

Precision Sensitivity F1-score Correctly identified MU counts

20 10 0.86 ± 0.18 0.73 ± 0.29 0.76 ± 0.28 8.27 ± 9.24
20 0.88 ± 0.18 0.73 ± 0.33 0.75 ± 0.31 8.44 ± 10.15
30 0.90 ± 0.16 0.80 ± 0.28 0.81 ± 0.27 10.96 ± 10.60
40 0.89 ± 0.19 0.83 ± 0.28 0.84 ± 0.27 11.79 ± 10.48
50 0.93 ± 0.12 0.84 ± 0.25 0.85 ± 0.23 10.90 ± 10.51

60 10 0.91 ± 0.15 0.82 ± 0.24 0.84 ± 0.23 9.25 ± 8.62
20 0.89 ± 0.16 0.77 ± 0.27 0.79 ± 0.25 6.73 ± 6.84
30 0.88 ± 0.16 0.75 ± 0.28 0.77 ± 0.26 6.19 ± 6.56
40 0.85 ± 0.16 0.68 ± 0.28 0.71 ± 0.26 3.94 ± 5.41
50 0.82 ± 0.18 0.61 ± 0.30 0.65 ± 0.28 2.42 ± 3.72

100 10 0.76 ± 0.35 0.69 ± 0.40 0.70 ± 0.39 8.60 ± 8.81
20 0.74 ± 0.30 0.65 ± 0.37 0.66 ± 0.36 5.38 ± 6.54
30 0.72 ± 0.26 0.60 ± 0.33 0.61 ± 0.32 3.21 ± 3.67
40 0.71 ± 0.24 0.58 ± 0.33 0.59 ± 0.31 2.38 ± 2.89
50 0.72 ± 0.18 0.57 ± 0.28 0.58 ± 0.26 1.69 ± 2.24

140 10 0.66 ± 0.42 0.64 ± 0.46 0.64 ± 0.45 9.73 ± 9.99
20 0.64 ± 0.39 0.61 ± 0.44 0.60 ± 0.43 6.85 ± 7.85
30 0.63 ± 0.36 0.59 ± 0.42 0.58 ± 0.40 6.10 ± 6.42
40 0.65 ± 0.32 0.59 ± 0.41 0.58 ± 0.39 5.48 ± 6.00
50 0.68 ± 0.25 0.59 ± 0.37 0.58 ± 0.35 4.90 ± 5.80

Values are expressed as mean ± standard deviation across 16 participants and 3 contraction intensities

Fig. 4 The impact of window size and step size on the decomposition accuracy of ML-DRSNet. The average (a) F1-score, (b) sensitivity, (c) correctly identi-
fied MU counts, and (d) precision are shown. Bars represent average values across 16 participants and 3 contraction intensities, with error bars indicating 
standard deviation
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a step size of 50 data points (Fig.  4; Table  2). For ML-
DCNN, the optimal combination comprises a window 
size of 140 data points and a step size of 50 data points, 
with a sensitivity of 1.00 ± 0.00, precision of 1.00 ± 0.00, 
F1-score of 1.00 ± 0.00 (Fig. 6; Table 5).

ML-DCNN exhibits consistently high performance 
under the miss rate standard (< 0.1), maintaining an aver-
age number of correctly identified MUs at 14.71 ± 8.23, 

which accounts for 95.66% of the average MUs identi-
fied using CBSS (Fig.  6c; Table  5). As for MT-DCNN, 
the optimal combination includes a window size of 140 
data points and a step size of 10 data points, achieving a 
sensitivity of 0.92 ± 0.04, a precision of 0.96 ± 0.04, and a 
F1-score of 0.94 ± 0.04. Under the miss rate standard of 
< 0.1, MT-DCNN correctly identified 11.90 ± 8.44 MUs, 
constituting 77.37% of the average MUs identified using 
CBSS (Fig. 7; Table 6).

This study compared the decomposition accuracy of 
ML-DRSNet, ML-DCNN, and MT-DCNN using their 
respective optimal window sizes and step sizes. For all 
contraction intensities, ML-DCNN consistently outper-
forms the other models in terms of F1-score, sensitivity, 
the number of correctly identified MUs, and precision 
(P < 0.001, Fig. 8; Table 7). No significant differences are 
observed between ML-DRSNet and MT-DCNN.

Table 3 Decomposition accuracy of ML-DRSNet at different 
contraction intensities
Intensity 10% MVC 30% MVC 50% MVC
Precision 0.89 ± 0.08 0.76 ± 0.14 0.71 ± 0.11
Sensitivity 0.77 ± 0.11 0.65 ± 0.12 0.62 ± 0.07
F1-score 0.79 ± 0.11 0.66 ± 0.13 0.63 ± 0.08
Correctly identified MU counts 9.04 ± 4.73 6.75 ± 3.72 4.19 ± 1.88
Values are expressed as mean ± standard deviation across 16 participants and 
20 window size and step size combinations

Fig. 5 Average precision and correctly identified MU counts of ML-DRSNet at (a)-(b) 10% MVC, (c)-(d) 30% MVC, and (e)-(f) 50% MVC for different window 
sizes and step sizes. Bars represent the average values across 16 participants, with error bars indicating standard deviation
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At 10% MVC, ML-DCNN significantly outper-
forms both ML-DRSNet and MT-DCNN in precision 
(P < 0.001), while no significant differences are found 
in the number of correctly identified MUs (Fig.  9a-b; 
Table  8). ML-DRSNet shows no significant difference 
in precision compared to MT-DCNN (P = 0.962, Fig. 9a; 
Table  8). At 30% MVC, ML-DCNN maintains signifi-
cantly higher precision than both MT-DCNN (P < 0.001) 
and ML-DRSNet (P < 0.05, Fig. 9c; Table 8). ML-DRSNet 
and MT-DCNN do not exhibit significant differences in 
either precision (P = 0.290) or the number of correctly 
identified MUs (P = 0.653, Fig. 9c-d; Table 8).

At 50% MVC, ML-DCNN continues to show signifi-
cantly better precision than both MT-DCNN (P < 0.001) 
and ML-DRSNet (P < 0.01), while no significant dif-
ferences are observed between ML-DRSNet and MT-
DCNN (P = 0.541, Fig. 9e-f; Table 8).

Furthermore, this study also compared the decompo-
sition accuracy of ML-DRSNet, ML-DCNN, and MT-
DCNN at the shortest window size (20 data points) and 
step size (10 data points). Figure  10; Table  9 show that 
ML-DRSNet significantly outperforms ML-DCNN and 
MT-DCNN in terms of F1-score, sensitivity, number of 
correctly identified MUs, and precision across all con-
traction intensities (P < 0.001).

At 10% MVC, the precision of ML-DRSNet is sig-
nificantly higher than that of MT-DCNN (0.93 ± 0.18 

Table 4 Training time and prediction time for ML-DRSNet at 
different window sizes and step sizes
Window 
size
(data 
point)

Step size
(data 
point)

Data size
(sample)

Training time
(s/epoch)

Predici-
ton time
(ms/
sample)

20 10 47,265 427.53 5.45
20 23,632 215.45 5.50
30 15,755 144.92 5.45
40 11,816 1096.91 5.43
50 9452 88.59 5.42

60 10 47,261 435.06 5.37
20 23,630 218.68 5.47
30 15,754 145.00 5.39
40 11,815 113.74 5.73
50 9452 91.68 5.50

100 10 47,257 432.02 5.36
20 23,628 217.37 5.34
30 15,752 146.28 5.34
40 11,814 111.43 5.29
50 9452 87.43 5.22

140 10 47,253 421.53 5.21
20 23,626 212.15 5.25
30 15,751 146.88 5.40
40 11,813 112.11 5.29
50 9450 90.82 5.29

Average 198.43 ± 126.19 5.39 ± 0.12
Training time and prediction time for ML-DRSNet at different window sizes and 
step sizes using data from subject S10 (10% MVC) for reference

Fig. 6 The impact of window size and step size on the decomposition accuracy of ML-DCNN. The average (a) F1-score, (b) sensitivity, (c) correctly identi-
fied MU counts, and (d) precision are shown. Bars represent average values across 16 participants and 3 contraction intensities, with error bars indicating 
standard deviation
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Table 5 Decomposition accuracy of ML-DCNN for different window sizes and step sizes
Window size
(data points)

Step size
(data points)

Precision Sensitivity F1-score Correctly identified MU counts

20 10 0.71 ± 0.24 0.49 ± 0.32 0.53 ± 0.31 2.54 ± 3.96
20 0.72 ± 0.31 0.59 ± 0.40 0.60 ± 0.39 4.75 ± 6.55
30 0.67 ± 0.36 0.61 ± 0.42 0.62 ± 0.41 6.33 ± 8.57
40 0.78 ± 0.32 0.74 ± 0.34 0.75 ± 0.34 7.71 ± 9.41
50 0.87 ± 0.24 0.85 ± 0.28 0.85 ± 0.28 9.63 ± 9.70

60 10 0.91 ± 0.09 0.78 ± 0.22 0.81 ± 0.19 5.79 ± 5.66
20 0.88 ± 0.14 0.74 ± 0.31 0.77 ± 0.28 5.42 ± 5.79
30 0.86 ± 0.18 0.75 ± 0.31 0.77 ± 0.29 6.13 ± 6.86
40 0.87 ± 0.21 0.80 ± 0.33 0.81 ± 0.31 7.60 ± 7.60
50 0.89 ± 0.20 0.82 ± 0.31 0.83 ± 0.30 8.81 ± 8.64

100 10 0.92 ± 0.08 0.86 ± 0.20 0.87 ± 0.18 7.85 ± 6.05
20 0.91 ± 0.11 0.89 ± 0.13 0.89 ± 0.13 7.77 ± 6.69
30 0.93 ± 0.12 0.91 ± 0.17 0.91 ± 0.17 10.04 ± 7.49
40 0.95 ± 0.10 0.95 ± 0.12 0.95 ± 0.12 11.77 ± 7.99
50 0.98 ± 0.07 0.98 ± 0.06 0.97 ± 0.07 13.06 ± 7.91

140 10 0.95 ± 0.07 0.91 ± 0.19 0.91 ± 0.16 11.56 ± 7.51
20 0.98 ± 0.05 0.99 ± 0.03 0.98 ± 0.04 14.15 ± 7.87
30 0.98 ± 0.06 0.99 ± 0.04 0.98 ± 0.05 13.79 ± 8.14
40 0.99 ± 0.02 0.99 ± 0.03 0.99 ± 0.03 14.17 ± 8.38
50 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 14.71 ± 8.23

Values are expressed as mean ± standard deviation across 16 participants and 3 contraction intensities

Fig. 7 The impact of window size and step size on the decomposition accuracy of MT-DCNN. The average (a) F1-score, (b) sensitivity, (c) correctly identi-
fied MU counts, and (d) precision are shown. Bars represent average values across 16 participants and 3 contraction intensities, with error bars indicating 
standard deviation
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Table 6 Decomposition accuracy of MT-DCNN for different window sizes and step sizes
Window size
(data points)

Step size
(data points)

Precision Sensitivity F1-score Correctly identified MU counts

20 10 0.66 ± 0.16 0.45 ± 0.16 0.51 ± 0.17 0.92 ± 0.16
20 0.51 ± 0.19 0.29 ± 0.17 0.35 ± 0.19 0.13 ± 0.44
30 0.36 ± 0.21 0.19 ± 0.15 0.23 ± 0.17 0.02 ± 0.14
40 0.29 ± 0.20 0.13 ± 0.12 0.16 ± 0.15 0.00 ± 0.00
50 0.23 ± 0.18 0.10 ± 0.09 0.12 ± 0.12 0.00 ± 0.00

60 10 0.93 ± 0.05 0.86 ± 0.06 0.89 ± 0.05 5.46 ± 5.07
20 0.88 ± 0.07 0.79 ± 0.09 0.83 ± 0.08 3.85 ± 4.17
30 0.79 ± 0.12 0.70 ± 0.13 0.74 ± 0.12 2.60 ± 3.44
40 0.70 ± 0.17 0.60 ± 0.18 0.64 ± 0.18 1.56 ± 2.32
50 0.63 ± 0.16 0.53 ± 0.18 0.56 ± 0.18 0.79 ± 1.44

100 10 0.95 ± 0.05 0.90 ± 0.05 0.92 ± 0.05 8.96 ± 6.89
20 0.92 ± 0.06 0.86 ± 0.07 0.89 ± 0.06 6.50 ± 5.94
30 0.86 ± 0.09 0.80 ± 0.10 0.83 ± 0.09 4.44 ± 4.68
40 0.80 ± 0.12 0.76 ± 0.13 0.77 ± 0.13 3.63 ± 3.94
50 0.74 ± 0.13 0.72 ± 0.15 0.72 ± 0.14 2.79 ± 3.22

140 10 0.96 ± 0.04 0.92 ± 0.04 0.94 ± 0.04 11.90 ± 8.44
20 0.93 ± 0.05 0.90 ± 0.06 0.91 ± 0.05 9.69 ± 7.14
30 0.88 ± 0.08 0.86 ± 0.09 0.87 ± 0.08 7.73 ± 6.41
40 0.83 ± 0.11 0.83 ± 0.13 0.83 ± 0.12 6.77 ± 5.40
50 0.79 ± 0.12 0.79 ± 0.16 0.78 ± 0.14 6.21 ± 5.31

Values are expressed as mean ± standard deviation across 16 participants and 3 contraction intensities

Fig. 8 Comparison of (a) F1-score, (b) sensitivity, (c) correctly identified MU counts, and (d) precision among ML-DRSNet, ML-DCNN, and MT-DCNN across 
all contraction intensities using their optimal window sizes and step sizes. Asterisks indicate statistical significance: * P < 0.05, ** P < 0.01, *** P < 0.001
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vs. 0.74 ± 0.17, P < 0.001) and ML-DCNN (0.93 ± 0.18 vs. 
0.84 ± 0.16, P < 0.05, Fig.  11a-c; Table  10). At 30% MVC, 
the precision of ML-DRSNet remains significantly higher 
than that of ML-DCNN (0.84 ± 0.18 vs. 0.60 ± 0.22, 
P < 0.01) and MT-DCNN (0.84 ± 0.18 vs. 0.65 ± 0.14, 
P < 0.05, Fig. 11c-d; Table 10). At 50% MVC, ML-DRSNet 
continues to show significantly higher decomposi-
tion accuracy compared to MT-DCNN (0.83 ± 0.19 vs. 
0.59 ± 0.12, P < 0.01, Fig. 11e-f; Table 10).

Table  11 illustrates the training time and predic-
tion time (including the optimal window size) required 
by ML-DRSNet, ML-DCNN, and MT-DCNN at their 
respective optimal step sizes and window sizes. Among 
the three models, MT-DCNN requires the longest train-
ing time, while ML-DCNN has the shortest. In terms of 
prediction time summed with the optimal window size, 
ML-DRSNet achieves the shortest, with a time of just 
15.15 ms/window. The prediction time of ML-DCNN is 
shorter than that of MT-DCNN.

Discussion
In this study, HD-sEMG decomposition was approached 
as a multi-label classification task, leveraging the syner-
gistic effects of MU discharge patterns to simultaneously 
identify multiple MUs. A new method, ML-DRSNet, was 
introduced, integrating multi-label learning with DRSNet 
for real-time HD-sEMG decomposition. Additionally, 
multi-label learning was incorporated with a simple 
DCNN resulting in the ML-DCNN. ML-DRSNet reduces 
the required window size and prediction latency, while 
ML-DCNN significantly improves decomposition pre-
cision compared to MT-DCNN. ML-DCNN accurately 
identifies most MUs, achieving precision exceeding 0.95, 
regardless of contraction intensity. Notably, ML-DRSNet 
maintains high accuracy with an average precision above 
0.90, and reduces the latency to 15.15 ms/window. These 
results demonstrate the feasibility and robustness of 
combining multi-label learning with DCNNs for precise 
real-time HD-sEMG decomposition, establishing a tech-
nological foundation for neuro-information-driven neu-
ral interfaces.

Previous studies have employed similar supervised 
training methods for real-time HD-sEMG decomposi-
tion. For instance, Wen et al. [22] proposed a DCNN, 
referred to as MT-DCNN in this study, which demon-
strated a total latency of 80 ms for processing an HD-
sEMG segment of 120 data points, with both sensitivity 
and precision surpassing 0.80. To validate decomposition 
accuracy, this study replicated MT-DCNN using the pro-
vided structure and code, with results showing sensitiv-
ity, precision, and F1-score all exceeding 0.90, and a total 
latency of 76.96 ms for processing each window size of 
140 data points. This successful replication paved the way 
for incorporating multi-label learning into HD-sEMG 
decomposition, leading to the ML-DCNN. ML-DCNN, 
using a window size of 140 data points, achieves sensi-
tivity, accuracy, and F1-score above 0.95, with a reduced 
prediction latency of 69.36 ms. ML-DCNN consistently 
outperformed MT-DCNN in the number of correctly 
identified MUs across various contraction intensities, 
thanks to the ability of multi-label learning to capture 
complex interactions among MUs.

Further advancing this approach, ML-DRSNet inte-
grated multi-label learning with DRSNet, efficiently pro-
cessing HD-sEMG segments as small as 20 data points, 
reducing prediction latency to 15.15 ms — over five 
times faster than MT-DCNN and four times faster than 
ML-DCNN. ML-DRSNet achieves precision above 0.85, 
with a minimal window size of 20 data points, and signifi-
cantly outperformed both MT-DCNN and ML-DCNN 
in decomposition accuracy at the smallest window size 
and step size. This improvement is likely contributed by 
the robust noise resistance of DRSNet and its ability to 
effectively extract essential features from short windows 
[26], resulting in high accuracy and reduced window size. 
ML-DRSNet surpasses previous methods in real-time 
decomposition performance (e.g., 84 ms and 94 ms using 
fast ICA peel-off [12, 13]; 67 ms and 28 ms using gated 
recurrent unit networks [20, 41]), achieving prediction 
latencies below the human electromechanical delay range 
from 70 ms to 385 ms [37].

However, several limitations must be acknowledged. 
First, due to the lack of appropriate experimental HD-
sEMG signals, this study did not analyze the impact 
of factors like electrode displacement on ML-DCNN 
and ML-DRSNet performance. Future research should 
explore the generalization and repeatability of these 
methods. Second, this study only validated the models 
in isometric contraction scenarios; dynamic contractions 
and muscle fatigue, which alter MUAPs, could affect per-
formance [42, 43]. Thus, developing protocols to enhance 
stability across various scenarios is crucial. Third, ML-
DRSNet may not generalize well to all participants, lead-
ing to higher outlier rates in some cases. This sensitivity 
to data distribution characteristics necessitates further 

Table 7 Decomposition accuracy of ML-DRSNet, ML-DCNN, 
and MT-DCNN across 3 contraction intensities at their optimal 
window sizes and step sizes
Method ML-DRSNet ML-DCNN MT-DCNN
Window size (data point) 20 140 140
Step size (data point) 50 50 10
Precision 0.93 ± 0.12 1.00 ± 0.00 0.96 ± 0.04
Sensitivity 0.84 ± 0.25 1.00 ± 0.00 0.92 ± 0.04
F1-score 0.85 ± 0.23 1.00 ± 0.00 0.92 ± 0.04
Correctly identified MU 
counts

10.90 ± 10.51 14.71 ± 8.23 11.90 ± 8.44
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optimization. Fourth, similar to previous studies [20, 22, 
41], these models heavily depend on supervised learning 
from the results of BSS algorithms, limiting their ability 
to recognize MUs in post-training contractions. Future 
work should focus on integrating unsupervised deep 
learning and deep metric learning to track new MUs in 
dynamic scenarios. Lastly, this study only evaluated the 
inference time of the deep learning-based decomposition 
networks under GPU acceleration. without considering 
the latency introduced by data acquisition, transmission, 

or hardware implementation in real-world applica-
tions. Future work should focus on optimizing real-time 
performance through hardware implementation using 
lower-level programming languages, and evaluate the full 
application latency, including signal acquisition, trans-
mission, preprocessing, and decomposition.

Fig. 9 Comparison of precision and correctly identified MU counts among ML-DRSNet, ML-DCNN, and MT-DCNN at (a)-(b) 10% MVC, (c)-(d) 30% MVC, 
and (e)-(f) 50% MVC using their optimal window sizes and step sizes. Asterisks indicate statistical significance: * P < 0.05, ** P < 0.01, *** P < 0.001
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Conclusions
This study introduced a method that integrates multi-
label learning with DRSNet for real-time HD-sEMG 
decomposition. ML-DRSNet significantly enhances 
real-time performance while maintaining high precision 

compared to ML-DCNN, which has already demon-
strated superior accuracy over MT-DCNN in decompos-
ing MUSTs. The successful combination of multi-label 
learning with DCNNs for sEMG decomposition demon-
strates substantial improvements in both accuracy and 
real-time performance. The proposed method presents a 
promising pathway for applying HD-sEMG decomposi-
tion algorithms to online neural interfaces.

Table 8 Decomposition accuracy of ML-DRSNet, ML-DCNN, and 
MT-DCNN at 10%, 30%, and 50% MVC at their optimal window 
sizes and step sizes
Intensity Method ML-DRSNet ML-DCNN MT-DCNN
10% MVC Precision 0.94 ± 0.11 1.00 ± 0.00 0.96 ± 0.04

Sensitivity 0.82 ± 0.28 1.00 ± 0.00 0.94 ± 0.04
F1-score 0.84 ± 0.26 1.00 ± 0.00 0.95 ± 0.04
Correctly identi-
fied MU counts

12.31 ± 11.57 17.06 ± 8.32 15.38 ± 8.98

30% MVC Precision 0.96 ± 0.07 1.00 ± 0.00 0.96 ± 0.04
Sensitivity 0.91 ± 0.18 1.00 ± 0.00 0.92 ± 0.04
F1-score 0.91 ± 0.17 1.00 ± 0.00 0.94 ± 0.04
Correctly identi-
fied MU counts

13.81 ± 10.53 16.50 ± 7.97 13.00 ± 8.29

50% MVC Precision 0.89 ± 0.16 1.00 ± 0.00 0.95 ± 0.04
Sensitivity 0.80 ± 0.26 1.00 ± 0.00 0.92 ± 0.05
F1-score 0.81 ± 0.25 1.00 ± 0.00 0.93 ± 0.04
Correctly identi-
fied MU counts

6.56 ± 8.37 10.56 ± 7.17 7.31 ± 6.11

Table 9 Decomposition accuracy of ML-DRSNet, ML-DCNN, and 
MT-DCNN across 3 contraction intensities at a window size of 20 
data points and a step size of 10 data points
Method ML-DRSNet ML-DCNN MT-DCNN
Window size (data point) 20 20 20
Step size (data point) 10 10 10
Precision 0.86 ± 0.18 0.71 ± 0.24 0.66 ± 0.15
Sensitivity 0.73 ± 0.29 0.49 ± 0.32 0.45 ± 0.16
F1-score 0.76 ± 0.28 0.53 ± 0.31 0.51 ± 0.16
Correctly identified MU counts 8.27 ± 9.23 2.54 ± 3.96 0.92 ± 1.56

Fig. 10 Comparison of (a) F1-score, (b) sensitivity, (c) correctly identified MU counts, and (d) precision among ML-DRSNet, ML-DCNN, and MT-DCNN 
across all contraction intensities using the shortest window size (20 data points) and step size (10 data points). Asterisks indicate statistical significance: * 
P < 0.05, ** P < 0.01, *** P < 0.001
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Fig. 11 Comparison of precision and correctly identified MU counts among ML-DRSNet, ML-DCNN, and MT-DCNN at (a)-(b) 10% MVC, (c)-(d) 30% MVC, 
and (e)-(f) 50% MVC using the shortest window size (20 data points) and step size (10 data points). Asterisks indicate statistical significance: * P < 0.05, ** 
P < 0.01, *** P < 0.001
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ML-DRSNet  Multi-label deep residual shrinkage network
DCNN  Deep convolutional neural network
ML-DCNN  Multi-label deep convolutional neural network
MT-DCNN  Multi-task deep convolutional neural network
MVC  Maximum voluntary contraction
GM  Gastrocnemius medialis
PNR  Pulse-to-noise ratio
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