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Abstract
Motor rehabilitation is a therapeutic process to facilitate functional recovery in people with spinal cord injury 
(SCI). However, its efficacy is limited to areas with remaining sensorimotor function. Spinal cord stimulation (SCS) 
creates a temporary prosthetic effect that may allow further rehabilitation-induced recovery in individuals without 
remaining sensorimotor function, thereby extending the therapeutic reach of motor rehabilitation to individuals 
with more severe injuries. In this work, we report our first steps in developing a non-invasive brain-spine interface 
(BSI) based on electroencephalography (EEG) and transcutaneous spinal cord stimulation (tSCS). The objective 
of this study was to identify EEG-based neural correlates of lower limb movement in the sensorimotor cortex of 
unimpaired individuals (N = 17) and to quantify the performance of a linear discriminant analysis (LDA) decoder 
in detecting movement onset from these neural correlates. Our results show that initiation of knee extension 
was associated with event-related desynchronization in the central-medial cortical regions at frequency bands 
between 4 and 44 Hz. Our neural decoder using µ (8–12 Hz), low β (16–20 Hz), and high β (24–28 Hz) frequency 
bands achieved an average area under the curve (AUC) of 0.83 ± 0.06 s.d. (n = 7) during a cued movement task 
offline. Generalization to imagery and uncued movement tasks served as positive controls to verify robustness 
against movement artifacts and cue-related confounds, respectively. With the addition of real-time decoder-
modulated tSCS, the neural decoder performed with an average AUC of 0.81 ± 0.05 s.d. (n = 9) on cued movement 
and 0.68 ± 0.12 s.d. (n = 9) on uncued movement. Our results suggest that the decrease in decoder performance in 
uncued movement may be due to differences in underlying cortical strategies between conditions. Furthermore, 
we explore alternative applications of the BSI system by testing neural decoders trained on uncued movement and 
imagery tasks. By developing a non-invasive BSI, tSCS can be timed to be delivered only during voluntary effort, 
which may have implications for improving rehabilitation.
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Introduction
Spinal cord injury (SCI) is a life-altering event in which 
damage to the spinal cord disrupts signals to and from 
the brain, resulting in lasting motor impairments and 
paralysis. Rehabilitation strategies such as exercise ther-
apy and gait training can aid in restoring some of the 
function that was lost with injury, but the effectiveness of 
these methods tends to plateau within the chronic stage 
of SCI (> 6 months post-injury) [1–3], and there is pres-
ently no cure for paralysis.

Spinal cord stimulation (SCS), applied epidurally and 
non-invasively during physical therapy, has shown prom-
ising effects in improving motor function in the chronic 
stage of SCI [2, 4–6]. SCS can provide a temporary pros-
thetic effect to paralyzed limbs, enabling a wider range of 
motion in individuals with paralysis, thus aiding in exer-
cise-based programs and promoting functional recov-
ery. Activity-dependent reorganization of spinal circuits 
enabled by SCS may be a primary contribution towards 
the restoration of function [2, 4, 6], where SCS is believed 
to amplify residual descending voluntary motor input, 
increasing cortical excitability [6, 7] and supporting the 
excitatory drive to the motoneurons [2, 7]. Therefore, 
linking the delivery of stimulation with descending vol-
untary motor input may result in improved recovery out-
comes through rehabilitation.

Brain-computer interfaces (BCIs) in rehabilitation pair 
feedback with a desired outcome, allowing the user to 
modulate their cortical activity based on biofeedback and 
promoting neuroplasticity in different brain regions [8, 
9]. Indeed, neurostimulation techniques that are timed 
with movement intention lead to better motor outcomes 
than continuous neurostimulation regardless of move-
ment intention [7, 10–13]. Invasive brain-spine interface 
(BSI) systems that link the delivery of SCS to brain-
decoded commands have been shown to improve gait 
function after SCI in proof-of-concept studies involving 
rats [10], primates [14], and one human [13]. However, 
the invasive nature and higher cost compared to non-
invasive alternatives may prevent invasive technologies 
from helping millions of people living with paralysis. In 
this work, we present the development and evaluation of 
a non-invasive BSI using event-related desynchronization 
in electroencephalography (EEG) to control the delivery 
of transcutaneous SCS (tSCS) in real time.

The long-term goal of this study is to use this non-
invasive BSI to promote recovery of voluntary lower-
limb movements in people with SCI. In this work, we 
developed a neural decoder to detect right knee exten-
sion via EEG in unimpaired control participants during 
a cued movement task. We tested the generalization of 
the decoder to imagery and uncued movement control 
conditions. We demonstrated that the neural decoder 
could predict movement with above-chance accuracy in 

all conditions, therefore showing that the decoder makes 
predictions primarily from cortical activity related to 
movement intention rather than experimental artifacts. 
The neural decoder was then tested in real-time in brain-
controlled tSCS, and we demonstrated that the system 
could provide an accurate, above chance, closed-loop 
control of tSCS timed with movement intention. Lastly, 
we demonstrated potential applications of this BSI sys-
tem in future rehabilitation contexts in control experi-
ments and additional analyses testing a decoder trained 
on uncued movement and imagery. These results may 
have implications for potential rehabilitation methods 
pairing the delivery of tSCS with the cortical desynchro-
nization of frequency bands commonly associated with 
movement [15, 16], thereby coupling cortical involve-
ment with rehabilitation.

Methods
Participant recruitment
This study has been approved by Washington Uni-
versity in St. Louis’ Institutional Review Board (IRB 
ID 202105168). Seventeen unimpaired participants 
(10 male, 7 female, average age 25.8 ± 3.9 years) were 
recruited for this study. Inclusion criteria included being 
between the ages of 18–65, having no acute or chronic 
pain conditions, having no acute or chronic disease of a 
major organ system, having no history of epilepsy, having 
no implanted metal, and having no major active medical 
problems. Participants performed one or more of three 
phases: (i) offline decoder validation without tSCS, (ii) 
real-time decoder testing with brain-controlled tSCS, or 
(iii) control conditions. Participant demographics and the 
phases they completed are summarized in Supplemen-
tary Table 1.

Data acquisition and processing
Electroencephalography (EEG) data were recorded 
at a 500  Hz sampling rate using a wireless 32-channel 
EEG headset (gNautilus, gTec, Austria) and base sta-
tion (gNautilus Base Station, gTec, Austria) within the 
BCI2000 software [17] (Fig.  1a). The 32 channels were 
positioned with a 64-channel electrode density over the 
central-medial areas according to the 10–10 system [18] 
to record relevant signals over the sensorimotor cortex.

Electromyography (EMG) signals were recorded at a 
1482 Hz sampling rate using wireless surface electrodes 
(Trigno® Avanti, Delsys Inc., USA) placed bilaterally 
over the rectus femoris, vastus lateralis, tibialis anterior, 
medial gastrocnemius, and soleus muscles according to 
the SENIAM convention [19]. Before placing the EMG 
sensors, skin was prepped using abrasive gel (NuPrep®, 
Weaver and Co. USA) with a cotton swab and then wiped 
off with alcohol pads. A secondary BCI2000 instance 
logged the EMG/IMU signals along with a participant 
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Fig. 1  Technological framework and experimental design. (a) Hardware setup. Technological framework for EEG and EMG signal acquisition and the 
delivery of tSCS using BCI2000 [17]. (b) Phase I experimental protocol. Phase I consisted of 3 conditions, 6 blocks per condition, and 10 trials (repetitions) 
per block. Cued movement blocks were used to train the decoder with 5-fold cross-validation, with the sixth block reserved for testing
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video at 30 fps (C270 HD Webcam, Logitech, Switzer-
land). A NI-DAQ (DAQ USB-6001, National Instru-
ments, USA) digital input/output board generated a 
square sync pulse that was fed to the EEG headset base 
station and a dedicated analog sensor (Trigno Avanti 
Analog, Delsys, USA) to ensure consistent synchroniza-
tion between data streams. The DAQ controlled stimu-
lation amplitude and a digital output set to trigger a 
biphasic constant current stimulator (DS8R, Digitimer, 
UK) through a digital pulse train generator (DG2A, Digi-
timer, UK) (Fig. 1a).

Experimental setup
Participants sat approximately 1 m in front of a 1.5 × 2.3 m 
projector screen and were asked to perform a right knee 
extension in response to a visual-auditory cue deliv-
ered according to one of three experimental phases. The 
objectives of the first phase (Phase I: Neural correlates of 
knee extension) were to (i) identify the neural correlates 
of lower-limb movements in unimpaired participants, 
(ii) develop a linear discriminant analysis (LDA)-based 
decoder of knee extension, and (iii) assess its ability to 
predict knee extension offline. The objectives of the sec-
ond phase (Phase II: Brain-controlled stimulation) were 
to evaluate the ability of the LDA-based decoder to (i) 
predict leg extension online and (ii) control the delivery 
of tSCS based on brain-decoded commands. The objec-
tives of the third phase (Phase III: Controls and alterna-
tive strategies) were to (i) perform control conditions to 
ensure the neural decoder was truly learning from cor-
tical activity related to leg extension, (ii) investigate the 
neural mechanisms of movement onset predictions, and 
(iii) demonstrate potential alternative applications of a 
BSI system in SCI rehabilitation contexts.

The length of each session and the number of blocks 
performed in each phase of the experiment was deter-
mined considering several factors, including the maxi-
mum EEG experiment duration for participant tolerance, 
average time of knee flexion and extension in the gait 
cycle of participants with SCI [6], the optimal 10:1 ratio 
of datapoints to dimensionality of the feature space, and 
an appropriate amount of past data incorporated into 
each classifier prediction [14]. The calculations of the 
block and session lengths can be found in Supplementary 
Materials.

Phase I: Neural correlates of knee extension
Participants were instructed to extend their right knee 
following a visual-auditory cue (Fig. 1b, cued movement 
condition), imagine extending their right knee without 
moving while following the same cue (Fig.  1b, imagery 
condition), or extend their right knee several times with-
out cues using their preferred timing (Fig.  1b, uncued 
movement condition). The cue consisted of a sequence 

of “Rest”, “Focus”, and “Move” periods during which these 
words were displayed on the screen. During the “Move” 
period, a video of an anthropomorphic knee extension 
was displayed. The imagery condition was used as a con-
trol for movement-related artifacts and to gain insights 
into potential applications in cases of complete SCI, in 
which no residual movement could be used to label train-
ing data. During the imagery condition, participants were 
read the following script: “This is our imagery run. As in 
the movement case, you will see three cues: ‘rest,’ in which 
you can relax; ‘focus,’ in which you prepare to move; and 
‘move,’ in which this time I will ask you not to move, but to 
look at the video and only imagine performing the move-
ment. It helped me to focus on the sensations that I would 
feel if I were to perform it, like tendons stretching.”

The uncued movement condition was used to con-
trol for cue-related artifacts and to determine the ability 
of the BSI to function independently without cues. To 
reduce variability across conditions, participants were 
instructed to perform the same slow movements dur-
ing cued and uncued movement conditions. Conditions 
were performed in block-randomized order, with each 
block consisting of ten repetitions of leg extension, and 
six blocks performed per condition (Fig. 1b).

Data processing, feature extraction, and LDA decoder 
training
Raw EEG signals were bandpass filtered between 4 
and 40  Hz to extract frequency bands of sensorimo-
tor rhythms [15, 20, 21], common average referenced to 
remove movement artifacts [20–22], and further decom-
posed in frequency in 4  Hz bins using a 4th-order But-
terworth bandpass filter bank (Fig.  2c). Power spectral 
density (PSD) was calculated by squaring the amplitudes, 
low-pass filtering at 2  Hz with a 4th-order Butterworth 
filter, and dividing by the bandwidth of the bin [21]. 
The filtered signal was then down-sampled to 10  Hz to 
improve decoder stability. The down-sampling frequency 
of 10  Hz was chosen as a frequency that is 5 times the 
highest frequency content (2 Hz), exceeding the theoreti-
cal minimum Nyquist rate of 2 times the frequency.

Time-frequency domain features were extracted from 
the PSDs and used to train the LDA classifier using the 
µ (8–12  Hz), low β (16–20  Hz), and high β (24–28  Hz) 
frequency bands. These frequency bands were selected 
based on our preliminary analysis, which showed that 
power fluctuations in the 4–44  Hz frequency band 
explain a large fraction of movement-related variance 
(Fig. 2a, b) and previous reports indicating that these fre-
quency bands contain important information related to 
sensorimotor function [6, 12, 15, 16, 21]. We avoided the 
30 Hz band to prevent contamination by stimulation arti-
facts from tSCS in Phase II.
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A two-class LDA decoder was trained based on 480 
extracted features corresponding to spectral (3 frequency 
bands), temporal (five previous 100 ms windows), and 
spatial (32 channels) information (Fig. 2c) to distinguish 
between movement and no movement. This approach 
maintained an approximate 1:10 ratio between the num-
ber of features and the size of the expected training 

dataset [23], reducing the risk of overfitting. Ground 
truth movement data was determined from the cue to 
compare the cue vs. imagery conditions and from the 
IMU to compare the cue vs. uncued movement condi-
tions. Movement onset from the IMUs was determined 
from an empirically tuned threshold crossing of angular 
velocity. The training data was randomly up-sampled to 

Fig. 2  Analysis of predictive frequency bands informed selection of feature space used in the LDA decoder. (a) Power spectral data recorded via senso-
rimotor channels during right knee extension for a representative participant. Analysis of the power spectral data during movement of pilot participants 
informed the selection of frequency bands within the feature space. (b) R2 scalp topographies for a representative participant. R2 was computed between 
the true movement label, and the power spectrogram was computed for each channel. Pilot data revealed sensorimotor desynchronization in several fre-
quency bands, including µ (8–12 Hz), low β (16–20 Hz), and high β (24–28 Hz). Non-neighboring frequency bands below 30 Hz were selected to prevent 
overlap in information fed into the decoder and to avoid the stimulation artifact at 30 Hz with the future addition of real-time tSCS. (c) EEG data processing 
pipeline. EEG data was bandpass 4–40 Hz filtered and common average referenced. Power was extracted in 4 Hz bins by band-passing, squaring, and low-
pass filtering the common average referenced data. 480 features were extracted corresponding to 3 frequency bands (µ, low β, and high β), 5 lags, and 32 
channels. Lags were incorporated so movement onset predictions can take data from the past 0.5 s into account. (d) Five-fold cross-validation decoder 
training. The decoder was trained with a 5-fold cross-validation strategy in which four blocks were used as training blocks. Once the hyperparameters 
were optimized to minimize validation error, the model was retrained on all five blocks and tested on the sixth, unseen block
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ensure class balance, and the seed was fixed for repro-
ducibility. The neural decoder was trained on the first 5 
blocks with a 5-fold cross-validation strategy to optimize 
the hyperparameters (Fig.  2d). A covariance regulariza-
tion term and a zero-rounding threshold were selected as 
the hyperparameters that minimized classification error 
within the 5-fold cross-validation. The decoder was then 
retrained using the entire training set and tested on the 
6th (last, unseen) block of each condition to minimize 
the risk of temporal leakage and to account for degraded 
performance over a session related to changes in EEG 
signal quality. All performance metrics reported refer to 
the test set.

To evaluate how the spatial and spectral data changed 
between rest and movement, topographical R2 was cal-
culated for pilot participants during the cued movement 
condition. Signed R2 was computed as the coefficient 
of determination between the true movement label and 
the power spectrograms of each channel and thus rep-
resented how much of the overall variance in power for 
each channel can be attributed to movement [24].

Phase II: Brain-controlled stimulation
Participants first performed six cued movement blocks 
with artificially controlled stimulation to train, validate, 
and test the neural decoder. These blocks were followed 
by six additional cued movement blocks to evaluate the 
brain-controlled stimulation in real time. The decoder 
was then retrained on all cued movement blocks and 
tested for generalization of brain-controlled stimulation 
during uncued movement.

Transcutaneous spinal cord stimulation (tSCS) was 
applied with a 3.2  cm diameter cathode located to the 
right of spinal segment T10 and a 7.5 × 10 cm return elec-
trode on the right side of the navel to target the right leg 
proximal muscles as previously described in our work 
[25] (Supplementary Fig.  1). During the first six blocks 
of decoder training, stimulation was delivered at 30 Hz. 
The amplitude was ramped up from 0 to 10 mA during 
the first 7 s of each block and alternated between 10 mA 
during the rest periods and 15  mA during the move-
ment periods. Although 15 mA was generally below the 
motor threshold, we chose this stimulation amplitude 
to help with participant retention, as continuous 30  Hz 
stimulation at high intensities can be difficult to toler-
ate for unimpaired individuals with intact sensory func-
tion. The stimulation protocol alternating between 10 
and 15  mA was developed (i) to improve participant 
comfort by preventing large jumps in stimulation ampli-
tude between the rest and movement periods and (ii) to 
ensure that neurophysiological effects and possible stim-
ulation artifacts were accounted for so that the decoder 
could learn to predict movement intention in the pres-
ence of tSCS. The neural decoder was trained using a 

5-fold cross-validation strategy, and two cued move-
ment runs were used to empirically tune the probability 
threshold while controlling the stimulation from brain-
decoded commands in real time. This manual tuning 
aimed to align stimulation with movement onset while 
balancing true/false positives and incorporating the par-
ticipants’ verbal feedback on the perceived alignment of 
stimulation.

The modified decoder was used to trigger stimula-
tion onset in real time during the next six blocks of 
cued movement. Stimulation was triggered (increased 
from 10  mA to 15  mA) when the calculated probabil-
ity rose above the probability threshold and was left on 
(15 mA) for a fixed duration of 6 s to match the expected 
movement cue duration, as done in previous work on 
brain-controlled spinal cord stimulation in non-human 
primates [14]. In addition, stimulation was reset to base-
line (10  mA) at the end of each movement cue with a 
1-second refractory period to prevent the 6-second stim-
ulation from continuing into the rest period. The decoder 
was then retrained using an 11-fold cross-validation and 
was tested for generalization to two blocks of uncued 
movement.

Phase III: Controls and alternative strategies
Action observation has been shown to activate motor 
regions related to the observed movement [26]. To 
account for possible confounds introduced by using an 
anthropomorphic cue, we evaluated decoder generaliza-
tion performance when two participants trained with and 
without the anthropomorphic cue (Supplementary Table 
1). Participants performed six blocks of cued movement 
using a rectangle with changing height as the movement 
cue (bar cue), followed by six blocks of cued movement 
using the anthropomorphic knee flexion graphic used 
in Phases I and II (knee cue). Decoders were tested for 
generalization to the uncued movement condition. These 
conditions were tested without tSCS. These conditions 
were not randomized; the bar cue was presented first to 
prevent participants from recalling the visual image of 
the anthropomorphic cue.

To account for differences in generalization perfor-
mance due to possible alternate neural strategies between 
cued and uncued movement, we evaluated the real-time 
performance of a neural decoder trained and tested on 
uncued movement in a group of four participants (Sup-
plementary Table 1). Participants performed six uncued 
movement runs with artificially controlled stimulation 
for decoder training. During the training blocks, stimu-
lation amplitude alternated between rest (10  mA) and 
movement (15 mA) based on a threshold crossing on the 
shin’s IMU pitch angle. The decoder was then trained 
using 5-fold cross-validation as previously described and 
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tested in real-time on an additional six uncued move-
ment runs with brain-controlled stimulation.

EEG noise and participant exclusion
In all experiment phases, EEG channel noise was evalu-
ated offline and used as a rejection criterion for partici-
pant data. The median of each channel’s rectified signal 
was compared to all channels’ interquartile range. Chan-
nels were considered noisy when their median was out-
side the interquartile range by a factor of three (i.e. < 
Q1–3*IQR or > Q3 + 3*IQR). As noisy channels greatly 
impacted common average referencing, blocks with any 
single noisy channel were removed. Two participants 
excluded from the analysis had noisy channels across all 
blocks throughout the experiment (Supplementary Table 
1).

Analysis and performance metrics
Decoder performance was calculated for each partici-
pant by computing the receiver operating characteristic 
(ROC) curve and finding the area under the curve (AUC). 
The ROC curve plots the true positives and false posi-
tives for a sweep of thresholds on the probability (Fig. 3e, 
f). The AUC was chosen as the performance metric since 
it is agnostic of the probability threshold and robust to 
class imbalance. All conditions were compared against a 
chance AUC of 0.5.

To evaluate how the spatial and spectral data changed 
between the imagery and uncued movement condi-
tions compared to the cued movement condition, topo-
graphical R2 was calculated for all participants across 
conditions. Each channel’s R2 during the imagery and 
uncued movement condition was then subtracted from 
the respective channel’s R2 in the cued movement condi-
tion. The differences in R2 were plotted topographically 
for visualization. In addition, we performed a principal 
component analysis (PCA) of the 32-channel R2 data. 
Principal components were calculated in the same space 
for all conditions and participants but separately for each 
frequency band. We quantified the Euclidian distance 
between each participant’s neural state [27] during the 
cued movement vs. imagery or uncued movement condi-
tions along the first three principal components.

We argue that perception of neural decoder perfor-
mance would vary according to a participant’s tolerance 
for time discrepancies between their movement and 
stimulation onset. However, the AUC performance met-
ric alone would not capture these timing discrepancies. 
To understand the relationship between performance 
and stimulation onset, we developed an additional per-
formance metric to quantify decoder performance as a 
function of a tolerance window around true movement 
onset. Predicted onsets were determined based on a posi-
tive crossing of a probability threshold. The threshold 

was set to the empirically tuned thresholds used online in 
Phase II and to 0.73 in Phase I, which was the average of 
the tuned thresholds across Phase II. True positives and 
negatives were determined from predicted onsets within 
the tolerance window, and these were calculated for 
tolerance windows ranging from the lowest (0  s) to the 
highest (3 s) tolerance for discrepancies between stimula-
tion and movement onset.

Statistics
The 95% confidence intervals on the AUC for each par-
ticipant were computed by calculating performance on 
bootstrapped (sampling with replacement) test data over 
500 iterations. Confidence intervals for all participants 
and conditions are reported in Supplementary Table 2. 
The AUCs used in group analysis were not part of the 
bootstrapped data but were based on the performance 
obtained from the original testing datasets. AUCs were 
statistically compared across experimental conditions 
using a non-parametric paired samples Wilcoxon signed 
rank test and compared to a chance AUC of 0.5 using a 
one-sample Wilcoxon signed rank test.

In Phase III, we used bootstrapping to compare decoder 
performance between groups and conditions with a dif-
ferent number of participants [7, 28]. The populations 
were sampled with replacement to obtain k = 10,000 fic-
tive populations to simulate a distribution for each condi-
tion. We then tested the null hypothesis that there was 
no significant difference between the means for both 
distributions. A p-value was calculated by estimating the 
overlap of the residuals with a Bonferroni correction for 
multiple comparisons. On the dataset with a small num-
ber of participants (n = 4), the simulated bootstrapped 
distribution was used in the comparison to chance.

R2 differences between conditions were statistically 
compared to zero using a one-sample signed rank test. 
Due to the high number of electrodes (32 channels) and 
low number of participants (7 participants), this analysis 
was not corrected for multiple comparisons. Correct-
ing for multiple comparisons would reduce the power to 
detect meaningful effects, increasing the risk of Type II 
errors; therefore, results are presented without correc-
tion while acknowledging this limitation.

A summary of the results of all statistical analyses are 
shown in Supplementary Tables 3 and Supplementary 
Fig. 2.

Results
EEG-based neural decoder can reliably predict movement 
during cued knee extension offline
In the first phase of this study, we asked whether the 
LDA decoder trained on the EEG data collected during 
the cued knee extension task could reliably predict move-
ment onset offline better than chance. The extracted 
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Fig. 3  Offline decoder performs above chance for cued, imagery, and uncued movement. (a) EEG spectrograms aligned with EMG and movement ki-
nematics during cued movement. A single participant’s EEG power features during offline testing on cued movements decomposed by frequency band 
aligned in time with EMG signals from the vastus lateralis (VL), rectus femoris (RF), tibialis anterior (TA), and medial gastrocnemius (MG), knee angle, and 
probability calculated offline. Desynchronization was observed in the EEG spectrograms across frequencies at the onset of movement. (b) EEG spectro-
grams aligned with EMG and movement kinematics during imagery. (c) EEG spectrograms aligned with EMG and movement kinematics during uncued 
movement. (d) Probability for single trials (thin lines) and averaged across trials (thick line) during focus and movement periods. Movement probability 
increased after movement onset. (e) Illustration of true positive and false positive rate calculation from probability. True positive and false positive rates are 
calculated at a sweep of probability thresholds between 0 and 1 and used to construct a receiver operating characteristic (ROC) curve. (f) ROC curve for 
a single participant. The ROC curve was calculated for a single participant by varying the threshold on the probability and comparing to true movement. 
The probability threshold used in e is shown on the ROC curve. The area under the ROC curve (AUC) was used to quantify all decoder performances. (g) 
ROC curve for each participant (thin lines) and averaged across participants (thick line) when testing on cued movement and average area under ROC 
curve (AUC) compared to chance. (h) Same as g but for a decoder tested on imagery. Paired comparison between cued and imagery and comparison 
of each to chance. (i) Same as g but for a decoder tested on uncued movements. Paired comparison between cued and uncued movement and com-
parison of each to chance. (j) Confusion matrix at a fixed probability threshold when tested on cued movement. k. Same as j but for a decoder tested on 
imagery. l. Same as j but for a decoder tested on uncued movement. Bars in g-i represent mean ± s.d., with each circle representing the testing AUC for 
each participant. The asterisks on the right of each bar represent the results of the one-sample Wilcoxon signed rank test for each decoder’s AUC against 
chance; the asterisks between bars represent the paired samples Wilcoxon signed test between two decoder’s average AUC. ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ 
p < 0.001. Abbreviations: rectus femoris (RF), vastus lateralis (VL), tibialis anterior (TA), medial gastrocnemius (MG)
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EEG features synchronized with EMG, knee angle, and 
the calculated movement probability for a representa-
tive participant during a single testing block are shown 
in Fig. 3a. The movement probability generally increased 
between the focus and movement phases (Fig. 3d). Group 
analysis revealed an average AUC of 0.83 ± 0.06  s.d. 
across seven participants, which was significantly higher 
than chance (Fig.  3g, Hedge’s g = 4.52, p = 0.02*, n = 7). 
Moreover, decoder performance was evaluated by exam-
ining the accuracy of predictions at every timepoint with 
a probability threshold of 0.73 (average of empirically 
tuned thresholds in Phase II) and calculating a confusion 
matrix (Fig. 3j). This resulted in an average true positive 
rate (TPR) of 92% and a true negative rate (TNR) of 54%, 
implying that, on average, the probability predictions 
were correct for 73% of timepoints. These results indicate 
that a decoder trained and tested on cued movement can 
reliably predict movement onset from the extracted fea-
ture space.

Generalization to imagery and uncued movement suggest 
robustness against movement and cue-related artifacts
The spectral EEG data during the imagery and uncued 
movement conditions showed movement-related desyn-
chronization, and offline-calculated probability was gen-
erally aligned with the movement phases (Fig.  3b, c). A 
group analysis on the performance of the cued move-
ment-based decoder tested on imagery blocks revealed 
an average AUC of 0.77 ± 0.07  s.d., which was not sig-
nificantly different from the performance of the same 
decoder tested on cued movement (Fig.  3h, Hedge’s 
g = 0.68, p = 0.08, n = 7). Additionally, this decoder’s 
performance was significantly above chance (Hedge’s 
g = 3.20, p = 0.02*). Confusion matrices averaged across 
participants revealed a TPR of 87% and TNR of 49%, 
indicating that on average, predictions were correct for 
68% of timepoints when tested on imagery (Fig. 3k).

The group analysis for the cued movement decoder 
tested on the uncued movement blocks revealed an 
average AUC of 0.72 ± 0.15  s.d., which was significantly 
lower than cued movement performance (Fig. 3i, Hedge’s 
g = 0.94, p = 0.03*, n = 7). However, this performance was 
still significantly higher than chance (Hedge’s g = 1.29, 
p = 0.03*). Confusion matrices across participants 
resulted in a TPR of 87% and TNR of 44%; thus, on aver-
age, 66% of time points were correctly predicted when 
tested on uncued movement (Fig. 3l).

Although performance slightly decreased when the 
decoder trained on the cued movement condition was 
tested for generalization to the imagery and uncued 
movement conditions, this performance was higher than 
chance. This suggests that although movement- and cue-
related artifacts may have a small impact on decoder per-
formance, the successful decoding performance of the 

cued movement-based decoder cannot solely be attrib-
uted to these artifacts. Moreover, these differences in 
performance could be attributed to intrinsic differences 
in neural strategies between tasks. Therefore, we next 
sought to investigate differences in desynchronization 
patterns across tasks.

Desynchronization patterns during cued movement have 
focused differences with imagery but global differences 
with uncued movement
To investigate differences in neural strategies between 
tasks, we compared topographical R2 maps across con-
ditions. Topographical R2 maps for two representative 
participants are shown in Fig.  4a. These participants 
were selected as representative examples of participants 
with good (S005) and poor (S001) generalization to the 
uncued movement condition, as denoted by the AUC. 
Note that the topographical R2 pattern in S005 is quite 
similar across conditions, and this participant had an 
AUC of 0.80 and 0.82 for the imagery and uncued move-
ment conditions, respectively. In contrast, while the R2 
pattern between imagery and cued movement was simi-
lar in S001, the pattern looks markedly different during 
the uncued movement condition. This participant had 
an AUC of 0.86 for the imagery condition and an AUC of 
0.58 for uncued movement.

The topographical maps for differences in R2 patterns 
between cued movement and the imagery and uncued 
movement conditions for participant S005 and aver-
aged across participants are shown in Fig. 4b. The group 
analysis revealed that while differences in desynchroniza-
tion between cued movement and imagery were focused 
on the central median channels, differences between 
cued and uncued movement were widespread across all 
channels.

Unlike classification algorithms such as LDA, principal 
components in PCA are not selected to separate different 
classes but to explain the most variance. Nevertheless, 
the neural states for the different conditions were some-
what isolated in PC space (Fig.  4c). The distance in PC 
space between the uncued movement and cued move-
ment conditions was generally higher than that between 
the imagery and cued movement conditions (Fig.  4d). 
However, this difference was not statistically significant.

Real-time brain-controlled tSCS in unimpaired individuals
We tested the real-time performance of delivering tSCS 
timed with movement intention predicted from the 
extracted EEG features (Fig.  5a). Stimulation was set 
to a baseline of 10  mA and increased to 15  mA during 
movement, modulated by the task cue in the training set 
(Fig.  5b). In real-time testing, desynchronization of the 
sensorimotor channels was synchronized with move-
ment onset shown by leg muscle EMGs and movement 
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kinematics (Fig. 5c) and was used by the decoder to con-
trol the onset of stimulation.

Group analysis revealed an average AUC of 
0.81 ± 0.05  s.d. when the decoder was tested on cued 
movement with stimulation (Fig. 5d) and an average AUC 
of 0.68 ± 0.12 when tested on uncued movement with 
stimulation (Fig. 5e). Consistent with Phase I results, the 
performance on brain-controlled tSCS during uncued 
movements was significantly lower than the performance 
on cued movements (Hedge’s g = 1.22, p = 0.01**, n = 9). 
However, the performance on both conditions was signif-
icantly above chance (Fig. 5f; Hedge’s g = 5.88, p = 0.004** 
tested on cued movements, and Hedge’s g = 1.21, 
p = 0.004** tested on uncued movements, n = 9).

We examined the stimulation paradigm’s accuracy 
at every timepoint by constructing a confusion matrix 
based on the real-time administered stimulation com-
pared to true movement. This resulted in an average 
TPR of 67% and TNR of 66% for cued movement across 
participants (Fig. 5g) and a TPR of 56% and TNR of 56% 
for uncued movement, implying that on average, stimu-
lation was correctly on or off for 67% and 56% of the 
cued and uncued blocks, respectively (Fig. 5h). Together, 
our results demonstrate the feasibility of an LDA-based 

neural decoder to predict movement intention and con-
trol tSCS in real-time.

Training on uncued movement does not significantly 
improve decoder performance in uncued movement
Due to the marked changes in neural strategy between 
cued and uncued movement, we asked whether train-
ing a decoder in a condition that resembles the desired 
application would improve performance. Group analy-
sis (n = 4) for the decoder trained on uncued movement 
revealed an average AUC of 0.74 ± 0.09  s.d (Fig.  6a). 
While the average AUC increased, the performance was 
not significantly different than a decoder trained on cued 
movement (Fig.  6b; Hedge’s g = 1.54, p = 0.12). A confu-
sion matrix was calculated from the real-time stimulation 
and averaged across participants. The TPR was 50% and 
TNR was 55%, implying that on average, stimulation was 
correctly on or off for 53% of the block (Fig. 6c).

Training on imagery can be used for generalization to 
movement conditions
People with complete SCI may not be able to generate 
a movement that could be measured by the EMG/IMUs 
to train the decoder. To overcome this limitation, the 

Fig. 4  Analysis of R2 suggests spectral and spatial differences in EEG activity between conditions. (a) R2 scalp topography plots during movement for two 
participants showing good (left, participant S005) and poor (right, participant S001) generalization across conditions. Consistencies in spatial and spectral 
activity across conditions resulted in better decoder generalization evidenced by higher AUCs. (b) Difference in R2 during movement between condi-
tions for one participant (left) and averaged across participants (right). Group analysis of R2 differences between conditions revealed focused differences 
between cued movement and imagery, and widespread differences between cued and uncued movement. Significant channels were not corrected for 
multiple comparisons. (c) PCA projections of R2 scalp topographies for all conditions and frequency bands. R2 data across electrodes was projected onto 
the first three PCs. Each point represents one participant, and data is color-coded by condition. PCs across conditions (left and right columns) are the 
same. Conditions shown separately for visualization purposes. (d) Average Euclidean distance of imagery and uncued movement to cued movement in 
PC space. Distance between uncued and cued movement is slightly larger than the distance between imagery and cued movement, but this effect is 
not significant
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Fig. 5  Real-time, closed-loop control of tSCS using predictions of movement intention in a non-invasive BSI. (a) Technological framework for non-invasive 
BSI. Desynchronization in the sensorimotor cortex was identified using a 32-channel EEG system in real-time as participants extended their right knee. 
The predicted movement intention was used to trigger the delivery of tSCS at a higher amplitude. (b) Illustration of a cued movement block used in the 
training set. Stimulation was ramped up to a baseline of 10 mA and was increased to 15 mA during the movement phases using the task’s movement cue. 
(c) EEG spectrograms of selected sensorimotor channels, kinematics, movement probability, and real-time closed-loop stimulation for a single block for 
a representative participant (thin lines) and averaged across trials (thick line). Note that there is event-related desynchronization before and after move-
ment onset. Stimulation onset was generally timed with movement onset as shown by the stimulation averaged across trials. (d) ROC curve for individual 
participants (thin lines) and averaged across participants (thick line) when testing on cued movement with stimulation. (e) Same as (d) but for a decoder 
tested on uncued movement with stimulation. (f) Paired comparison of average AUC across participants for cued and uncued movement and compari-
son to chance. (g) Confusion matrix calculated according to the stimulation administered during the trial and averaged across participants. (h) Same as 
g but for a decoder tested on uncued movement. Bars in f represent mean ± s.d., with each circle representing the average AUC for one participant. The 
asterisks on the right of each bar represent the results of the paired samples Wilcoxon signed test for each decoder’s AUC against chance; the asterisks be-
tween bars represent one-sample Wilcoxon signed test between two decoders’ average AUCs. ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001. Abbreviations: rectus 
femoris (RF), vastus lateralis (VL), tibialis anterior (TA), medial gastrocnemius (MG). EEG map and brain region division modified from [29]
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decoder used in the real-time control of tSCS would need 
to be trained on data obtained during motor imagery. The 
offline performance of the decoder trained on imagery 
and tested on cued movement is shown in Fig. 7a. Group 
analysis (n = 7) revealed an average AUC of 0.79 ± 0.09 s.d. 
This performance was not significantly different from the 
decoder’s performance when trained on cued movement 
(Hedge’s g = 0.43, p = 0.29), and both were significantly 
above chance (Fig. 7b; Hedge’s g = 2.79, p = 0.02* for imag-
ery-based decoder and Hedge’s g = 4.52, p = 0.02* for cued 

movement-based decoder, n = 7).The confusion matrix 
averaged across participants resulted in a TPR of 74% 
and TNR of 43%, implying that when applied, stimula-
tion would be correctly on or off for 59% of the block on 
average (Fig. 7c). Therefore, while a decoder can general-
ize to imagery when trained on cued movement (Phase 
I), it can also generalize to cued movement when trained 
on imagery. These results are in agreement with previ-
ous reports that imagery-based decoders can be used to 
control BCI devices in real-time [30–35] and suggest that 

Fig. 7  Imagery-trained decoder can generalize to cued movements. (a) ROC curve for all participants (thin line) and averaged across participants (thick 
line) when the decoder was trained on imagery and tested on cued movement. (b) Paired comparison of average AUC across participants for a decoder 
tested on cued movement, trained on cued movement and imagery. AUC between decoders trained on cued and imagery were not significantly differ-
ent and were both significantly higher than chance. (c) Confusion matrix calculated from simulated stimulation according to the implemented stimula-
tion paradigm and averaged across participants for a decoder trained on imagery and tested on cued movement. The mean of TPR and TNR was 59%. Bars 
in (b) represent mean ± s.d., with each circle representing the average AUC for one participant. The asterisks on the right of each bar represent the results 
of the one-sample Wilcoxon signed rank test for each decoder’s AUC against chance; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

 

Fig. 6  Cued and uncued movement-trained decoders’ performance on uncued task. (a) ROC curve for all participants (thin lines) and averaged across 
participants (thick line) when the decoder was trained and tested on uncued movement. (b) Average AUCs for a decoder tested on uncued move-
ment trained on cued and uncued movement. The performance of the decoder trained on uncued movement (n = 4) was generally higher than the 
performance of the decoder trained on cued (n = 9), but not significantly different when compared with a bootstrapping analysis. (c) Confusion matrix 
calculated from the real-time stimulation and averaged across participants. The mean of TPR and TNR was 53%. Bars in b represent mean ± s.d., with each 
circle representing the average AUC for one participant. The asterisks on the right of each bar represent the results of a one-sample Wilcoxon signed rank 
test for each decoder’s AUC against chance. ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001
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our system could potentially be applied in cases of com-
plete SCI.

Perception of decoder performance improves with 
tolerance for time discrepancies
To evaluate how participants’ perceived decoder per-
formance would change according to tolerance for time 
discrepancies between their movement intention and 
stimulation onset, we analyzed decoder accuracy as a 
function of time window tolerance. Stimulation onsets 
were determined by positive crossings of the probability 
over the empirically tuned threshold, and these onsets 
were compared to true onsets within a tolerance win-
dow (Fig.  8a). Predicted movement onsets were classi-
fied as true or false positives depending on whether they 
fell within or outside the tolerance window (Fig. 8b). We 
observed that true positives and true negatives increased 
with increasing tolerance window, while false negatives 
and false positives decreased (Fig. 8c).

To compare decoder performance across conditions, 
we used the tolerance window at which we observed 
diminishing returns on performance for the Phase I 
cued movement condition, which was at 0.8  s (Fig.  8c). 
The mean of TPR and TNR with a 0.8-second tolerance 

window across conditions is reported in Supplementary 
Table 4. Importantly, we report the tolerance window as 
half of the total width, i.e., a tolerance window of 0.8  s 
implies onset ± 0.8 s for a full window length of 1.6 s. In 
Phase I, the mean of TPR and TNR at 0.8 s was 73% for 
cued movement (i.e., 73% of true onsets and rest periods 
are detected correctly with a 0.8-second tolerance win-
dow), 60% for imagery, and 44% for uncued movement. 
In phase I, the results of timing accuracy provide a con-
ceptual understanding of how the decoder may perform 
with the addition of real-time tSCS.

In Phase II, the mean of TPR and TNR for cued and 
uncued movement were 56% and 41%, respectively 
(Fig. 8c, Supplementary Table 4). This performance met-
ric applied to real-time tested data implies that stimula-
tion onset was within 0.8 s of true onset 56% of the time 
in cued movement and 41% of the time in uncued move-
ment, demonstrating that the timing accuracy of move-
ment onset prediction on uncued movement is generally 
lower than cued movement predictions. Combined with 
the AUC results, this implies that the decoder detects 
movement with above-chance accuracy when tested on 
both cued and uncued movements but performs with less 
accurate timing when tested on uncued movement.

Fig. 8  Decoder accuracy changes as a function of tolerance for discrepancies in time. (a) Illustration of onset detection accuracy calculation. Onset detec-
tion accuracy was calculated as a function of tolerance time window length around true onset. Predicted onsets were defined as a positive crossing of the 
probability above threshold. (b) Illustration of varying the tolerance window around true onset to calculate the onset detection accuracy. Tolerance win-
dow was varied from 0 to 3 s. True positives were considered any predicted onsets within the window, and true negatives were the absence of an onset 
prediction within rest. (c) Onset detection accuracy plotted as a function of tolerance time window around true onset and averaged across participants 
for all conditions. The point of comparison across conditions (0.8 s) is denoted by a vertical dotted line
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The mean of TPR and TNR for a decoder trained and 
tested on uncued movement was 41% (Fig.  8c, Supple-
mentary Table 4), suggesting that the timing accuracy of 
stimulation onset does not tend to improve when training 
on uncued data. The mean of TPR and TNR for a decoder 
trained on imagery and tested on cued movement was 
58% (Fig. 8c). Therefore, the generalization between cued 
movement and imagery in Phase I has comparable timing 
accuracy to the generalization accuracy between imagery 
and cued movement in Phase III.

Anthropomorphic cue is not essential for successful 
decoder performance
As a control and to determine whether action observa-
tion that activates motor regions related to the observed 
movement [26] was necessary to allow the accurate pre-
diction of movement intention, we compared decoder 
performance when trained on anthropomorphic (knee 
cue) and non-anthropomorphic (bar cue) cues. Decoder 
performance for two participants during cued and 
uncued movement is shown in Supplementary Fig.  3. 
Decoder performance tended to be similar when it 
was trained on the knee or bar cues, suggesting that an 
anthropomorphic cue was not essential for the ability of 
the decoder to accurately predict movement intention for 
the cued or uncued movement conditions.

Discussion
Summary
In this study, we validated a noninvasive BSI in unim-
paired participants, with the aim of applying it as a 
rehabilitation strategy for motor recovery of lower limb 
function in individuals with SCI. Our findings demon-
strate that the decoder can accurately predict the onset 
of lower limb movement through EEG signals better 
than chance and with consistent performance to similar 
decoders in the literature [21, 36]. This capability allows 
for the delivery of tSCS synchronized with movement 
intention in real time. Importantly, we verified that the 
decoder’s predictions were based on cortical activity 
rather than movement or cue-related artifacts, as evi-
denced by above-chance performance in imagined and 
uncued movement conditions. Furthermore, we demon-
strated the decoder’s effectiveness in real-time control of 
tSCS, even in the presence of stimulation artifacts. These 
results suggest that this BSI system could be effectively 
integrated into rehabilitation strategies aimed at enhanc-
ing neuroplasticity and improving motor recovery in 
people with SCI.

Generalization to imagery trials suggests similarities in 
neural strategies between tasks
Scalp EEG recordings have been reported as being highly 
susceptible to motion-related artifacts that can distort 

neural data [13, 37, 38]. Our results show that the neural 
decoder trained on real, cued movements accurately gen-
eralized to the imagery condition (Fig. 3b, h, k), and vice 
versa (Fig.  7). These observations suggest that detected 
event-related desynchronization in the µ (8–12 Hz), low 
β (16–20  Hz), and high β (24–28  Hz) frequency bands 
was related to movement intention rather than move-
ment artifacts. Moreover, our results suggest that individ-
uals employ a similar neural strategy when they imagine 
extending their knee and when they extend their knee, as 
demonstrated by consistent desynchronization topogra-
phy maps across conditions (Fig. 4). These results are in 
agreement with previous studies showing event-related 
desynchronization similarities between imagined and 
preparatory movement [15, 16] and that imagery trials 
can be successfully used as training sets in BCIs that are 
used to control exoskeletons or paralyzed limbs [30–35]. 
Furthermore, our results expand the potential application 
of our BSI to participants with no residual movement, 
given that sensorimotor event-related desynchronization 
is not substantially reduced due to cortical reorganiza-
tion post-injury [39]. In these cases, a training set con-
sisting of imagery could be used in the delivery of tSCS 
timed with cued movement, enabling a participant with 
no residual movement to perform rehabilitation tasks.

Cued and uncued movements may employ different neural 
strategies
The lower decoder performance in generalization 
from cued to uncued movements (Fig.  3c, i, l) could be 
explained by widespread differences in the desynchroni-
zation patterns between these tasks (Fig. 4a, c, d). Neural 
population activity in the motor cortex during reaching 
tasks has been shown to be consistent across direction, 
curvature, and distance, but varies with temporal dynam-
ics such as velocity and reaction time [40, 41]. Addition-
ally, neural firing in the dorsal premotor area (PMd) and 
supplementary motor area (SMA) has been shown to 
increase during voluntary self-paced movements [42, 43], 
while putaminal activation occurs with a shorter latency 
during self-paced movement compared to cued move-
ments [44]. Together with our results, these observations 
suggest that cued and uncued movements may employ 
different neural strategies, creating important implica-
tions for BSIs that are aimed to be used during naturalis-
tic, uncued movements.

Generalization to naturalistic, uncued movements requires 
further improvements
Enabling the BSI to work under naturalistic, uncued 
movements would allow individuals with SCI to practice 
tSCS-assisted leg movements at their own pace and with-
out the need to rely on an external cue. We investigated 
whether training our decoder on uncued movements 
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could increase performance during the same task. While 
the average AUC increased (Fig.  6b), the effect was not 
significant. Although this could be due to the low number 
of participants, our results indicate that the new decoder 
did not capture the strategy in uncued movement signifi-
cantly better than a decoder trained on cued movements. 
Similarly, confusion matrices averaged across partici-
pants revealed poor performance of the stimulation par-
adigm (Fig.  6c), suggesting that online predictions were 
inconsistent and empirically tuned probability thresh-
olds could not account for unpredictable fluctuations in 
online probability.

The low performance across decoders trained on 
uncued movement could be due to several factors. 
Although we instructed participants to try to be as con-
sistent with their movements as possible, we did not 
enforce this strategy. Therefore, the uncued task may con-
tain higher variability in movement patterns compared to 
the cued condition, which negatively impacted decoder 
performance. Our subject-specific analysis revealed that 
desynchronization patterns were consistent across cued 
and uncued movements for some participants but not 
for others (Fig. 4a, Supplementary Table 2). Although we 
did not analyze these populations separately due to the 
low number of participants, participants with consistent 
activation patterns may have higher generalization per-
formance than those with inconsistent patterns. Desired 
neural patterns have been used as a screening tool for 
EEG-based BCI studies [30, 31]. However, we included all 
participants without a priori screening phase. Neverthe-
less, individuals can learn to generate the desired neural 
patterns via long-term BCI biofeedback training [12]. 
Therefore, enabling the non-invasive BSI to work under 
naturalistic, uncued movements remains an important 
area of research for future work.

Neural decoder limitations and potential improvements
An LDA algorithm was chosen in this study for its low 
variance, fast training/testing time, and interpretabil-
ity of feature space [45]. The assumptions of linearity, 
shared class covariance, and normality were not explicitly 
tested in this study. However, LDA classifiers have been 
shown to be robust to such violations in similar applica-
tions [21, 36, 45]. Nonlinear models and neural networks 
could be explored to optimize performance [32, 45], but 
the increased training time and training set size due to 
the complexity of these algorithms would require a sig-
nificant increase in performance to justify their use [9]. 
Moreover, as this technology progresses toward clini-
cal applications, the recalibration time between sessions 
will become a significant factor. Determining the optimal 
recalibration intervals will be crucial to ensure consistent 
performance and adaptability of the system for individual 
patients over multiple sessions.

An analysis of the prediction performance at every 
timepoint at a particular probability threshold, as seen 
in the confusion matrices (Figs. 3j, k and l, 5g and h, 6c 
and 7c), showed a bias toward TPR over TNR in Phase (I) 
The probability threshold was empirically tuned by incor-
porating participants’ feedback in real time during Phase 
(II) Phase I confusion matrices showed a higher TPR 
than TNR when the average empirically tuned threshold 
was used in the analysis, suggesting that this threshold 
was likely too low. However, the confusion matrices from 
the empirically tuned thresholds in Phase II resulted in a 
close balance between TPR and TNR (Fig. 5g, h). None-
theless, we reported an average of TPR and TNR as a bal-
anced metric of decoder accuracy.

In future developments, a mathematical optimization 
of the threshold on the probability could be performed 
when initially training, validating, and testing the decoder 
so that the true positives and true negatives would be bal-
anced. However, participants in our study had different 
preferences for the balance between true positives and 
true negatives, suggesting that the difference between a 
mathematically optimized threshold and one preferred 
by an individual can be subjective, and therefore, some 
element of empirical tuning would still be needed. While 
some participants may prefer receiving stimulation even 
when they do not intend to move, others may prefer 
having missed detections where their movements lack 
assistance from tSCS. While stimulation onsets may not 
be perfectly timed with movement intention in our BSI 
system, current approaches in tSCS provide 30 Hz stim-
ulation continuously for 0.5–1  h during a rehabilitation 
session regardless of movement intention or movement 
phase [46–48].

In applying BCIs in rehabilitation, an essential consid-
eration is the delay between the evoked neural state and 
the biofeedback [49]. In our BSI system, the primary fac-
tor contributing to the delay is the online low pass filter 
at 2 Hz, which was added to ensure smooth decoder per-
formance and allow enough time for real-time data pro-
cessing. However, the delay in our system may need to be 
reduced to allow for Hebbian learning, in which the con-
nections between simultaneously activated neurons are 
strengthened, allowing for neuroplasticity and synaptic 
reorganization in people with SCI [3, 10, 12]. Applying 
tSCS precisely timed with the neural state evoked during 
movement could better improve motor outcomes as this 
system is applied as a rehabilitation strategy. Therefore, 
careful attention should be given to maintaining a bal-
ance between fast stimulation timing and decoder per-
formance (Fig. 8).
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Considerations for clinical translation involve further study 
of rehabilitative effects
This study presents a first step towards developing a non-
invasive BSI that uses real-time predictions to deliver 
tSCS to reinforce voluntary single-joint movements for 
motor rehabilitation in people with SCI. Although we 
successfully demonstrate binary decoding of knee exten-
sion as a proof-of-concept of a non-invasive BSI, this 
application is far from invasive BSI systems that can 
decode and reinforce bilateral, multi-joint movements 
during walking after SCI [13]. Therefore, several consid-
erations should be addressed in future studies to develop 
non-invasive BSIs that support gait rehabilitation in peo-
ple with SCI.

Penfield’s classical homunculus, based on an approxi-
mation of group-averaged, intraoperative electrocorti-
cal stimulation, was illustrated with the hip, knee, ankle, 
and foot regions deep in the longitudinal fissure along the 
central sulcus [50, 51]. This cortical representation would 
suggest that all key leg muscles involved in walking over-
lap under the Cz electrode, making the decoding of right 
vs. left leg or hip vs. knee. vs. foot extremely challenging 
with EEG. However, recent studies considering structure, 
connectivity, and function using precision functional 
magnetic resonance imaging (precision fMRI) suggest 
the existence of effector-specific functional zones within 
lower-limb joints. These studies also suggest inter-effec-
tor regions involved in the coordinated control of these 
joints extending laterally from the longitudinal fissure 
along the cortex [52]. Although this new evidence sug-
gests that decoding the intended activation of different 
leg muscles may be more feasible than originally thought, 
the poor spatial resolution of EEG [53] will likely pres-
ent unique challenges that will have to be overcome in 
future studies. Nevertheless, alternative strategies can be 
employed by using state-dependent decoding to initiate 
pre-determined patterns of stimulation, as has been done 
by other groups during EEG control of functional electri-
cal stimulation for gait rehabilitation [54–56].

While we customized the neural decoder accord-
ing to each participant’s EEG data, an avenue for future 
research could be to test a generalized decoder trained 
on data from all participants. This approach could reveal 
whether a universal decoder can perform comparably to 
personalized ones, potentially simplifying the deploy-
ment process in clinical settings. However, one critical 
aspect to consider is that cortical representation of body 
areas may reduce in size or migrate after long-term loss 
of motor function or change with age, experience, or neu-
rorecovery [14, 57–63]. Sensorimotor regions containing 
event-related desynchronization in people with SCI may 
differ from those reported here and are likely unique for 
each participant [39, 64–66]. We have previously dem-
onstrated the successful application of brain-controlled 

exoskeletons across participants with different levels of 
stroke severity [30, 67], and we argue that cortical reorga-
nization is more pronounced after stroke than after SCI. 
Therefore, we expect that neural decoders trained on 
individuals with SCI would accurately predict movement 
despite cortical reorganization, as long as their desyn-
chronization patterns are consistent within a session. 
Moreover, repositioning the EEG cap across sessions will 
introduce changes in skin-to-electrode impedance, con-
nectivity, and placement, which will require daily recali-
brations or advanced algorithms that can realign cortical 
activation patterns to those from previous sessions [68].

BCI systems are thought to promote cortical plasticity, 
but the optimal method to induce neuroplasticity lead-
ing to motor recovery remains poorly understood. Previ-
ous applications of BCI systems in rehabilitation paired a 
desired neural state with FES feedback, training partici-
pants to recreate a predetermined neural state to receive 
FES supporting their movements, and thus inducing 
functional recovery [12]. While shown to be effective 
in the rehabilitation of upper limb function in people 
with stroke, inducing a desired neural state rests on the 
assumption that neurological recovery involves restor-
ing a state that resembles unimpaired controls [69–72]. 
In our application, we train a decoder to identify con-
sistencies in the existing neural state during movement 
and pair this neural state with tSCS feedback. While it 
is unclear which method would be better at promoting 
recovery, the question remains of how well a user can 
learn to control a decoder. Nevertheless, co-adaptation of 
the user and BCI system will likely be essential to achieve 
natural and improved control [9, 73].

Age-related changes in neural correlates could introduce 
additional challenges
Although age could not be used to target recruitment for 
this study, it is important to note that the age distribution 
in our study reflects that of a university environment, 
which is younger than the general population. Although 
young people of similar age groups account for a large 
proportion of cases of SCI [74, 75], age-at-injury has been 
increasing over the last few decades [76, 77]. Therefore, 
it will be crucial to evaluate the impact that age-related 
changes in neural correlates can have on the real-time 
prediction of movement performance [60].

Conclusion
In this work, we demonstrate the feasibility of a noninva-
sive BSI in unimpaired participants. The accurate decod-
ing of EEG signals can be used to synchronize tSCS with 
movement intention and shows promise for improving 
neurorehabilitation techniques. Continued development 
and optimization of this system could further enhance 
its efficacy and accessibility. Integrating this BSI system 
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into rehabilitation protocols could enhance neuroplasti-
city and motor recovery, while also advancing our under-
standing of BCI-based rehabilitation.
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