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Abstract 

Dance is a rich artistic expression that combines intricate human movements with music, emotion, and cultural 
elements. However, the analysis of complex dance movements poses significant challenges because of the lack 
of comprehensive motion capture data and efficient computational techniques for feature extraction. In the current 
study, we present a novel time-dependent principal component analysis approach for extracting beat-aligned motor 
synergies from large street dance datasets. Unlike existing methods, our technique accounts for the temporal vari-
ability induced by music beats, enabling an accurate representation of dance motion patterns. The extracted motor 
synergies, capturing both spatial and temporal patterns across motion segments and beat durations, were analyzed 
to gain insights into motor coordination, consistency, similarity, and variability across different dance genres. This 
analysis facilitates the understanding of complex dance movements by summarizing them in a low-dimensional sub-
space, elucidating the common elements and coordinated modalities among various dance sequences segmented 
based on the timing of music beats. Furthermore, we demonstrated that kinematic beat detection was improved 
by leveraging the first motor synergy activation, enabling more accurate beat alignment and synchronization 
with the music, a crucial factor in dance performance and analysis. The enhancement of beat estimation accuracy 
was verified through cross-validation comparisons of beat alignment scores. This work offers a novel computational 
approach to analyzing and extracting meaningful patterns from complex dance motions for a deeper understand-
ing of the motor mechanisms inherent in dance genres, enabling new insights into the intricate dynamics of dance 
movements and their relationships with music influences.
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Introduction
Dance is one of the most intricate motor skills exhibited 
by humans [1], integrating whole-body motor coordina-
tion, music-induced movements, and synchronization 
to rhythmic stimuli. However, analyzing such complex 
movements remains a challenging and open issue in the 
field of biomechanical research. A substantial amount 
of research has been conducted to advance this topic, 

including studies involving human experiments [2, 3] and 
computational simulations [4, 5].

Most previous studies on dance biomechanics have 
focused on a small number of specific dance genres and 
have performed kinematic analyses to directly examine 
particular body parts or joints. As one of the most rep-
resentative dance genres, classical ballet movements 
have been analyzed in many studies. For example, Imura 
et  al. [6] estimated movement intensity from joint tor-
ques of both legs (supporting and gesture legs) during 
the fouetté turn. The results revealed that training the 
supporting leg enhanced the continuity of fouetté revo-
lutions. Thullier et al. [7] analyzed multi-joint coordina-
tion patterns within the hip, knee, and ankle joints while 
executing foot-drawn ellipses in a horizontal plane. Their 
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work demonstrated the utilization of body joint redun-
dancy to maintain balance when performing intricate 
leg movement trajectories. In a study by Bronner et  al. 
[8], the authors elucidated group differences in postural 
pelvic control and intra-limb as well as inter-limb seg-
mental coordination by scrutinizing multi-joint ballet 
movements (développé arabesque). These disparities 
were found to serve as indicators for assessing skill lev-
els in complex dance movements. Other studies have 
focused on hip-hop dance (or street dance). Sato et al. [9] 
extracted distinctive features of basic rhythmic hip-hop 
dance movements. They postulated that introducing a 
motion delay in certain body parts (such as the head or 
neck) might enhance dance performance. Bronner et al. 
[10] gathered hip, knee, and ankle kinematics to assess 
potential injury rates stemming from hip-hop dance 
steps. This research effort aided healthcare profession-
als’ understanding of the rehabilitation needs of hip-hop 
dancers following musculoskeletal injuries.

Several advanced studies on dance movements have 
delved into the analysis of motor coordination or syn-
ergy among many body parts or joints, specifically using 
dimensionality reduction techniques. The concept of 
motor synergy postulates that high-dimensional human 
motion can be well represented in a lower-dimensional 
space that is essential for effective motor control by the 
central nervous system (CNS) [11]. Such a hierarchical 
control framework offers a viable means to elucidate the 
mechanics behind synergistic motor activities [12]. For 
instance, Vincs et  al. [13] assessed the consistency and 
variability of choreographed ballet and contemporary 
dance movements among dancers using low-dimensional 
motion representations obtained by principal compo-
nent analysis (PCA). Taking a similar approach, Bronner 
et  al. [14] used PCA to summarize gesture limb move-
ments of both expert and intermediate dancers execut-
ing développé arabesque. The results revealed that PCA 
explained motion differences between expert and inter-
mediate dancers, and among three different conditions: 
slow tempo, slow tempo with relevé (i.e., on tiptoe), and 
fast tempo. Toiviainen et al. [15] studied how music influ-
ences dance movements in response to different rhyth-
mic patterns. The researchers used PCA to identify basic 
motor patterns that synchronize with different rhythmic 
layers in the music. The results revealed that these motor 
patterns can be synchronized simultaneously across mul-
tiple rhythmic layers in the music. In a subsequent study, 
Toiviainen et al. [16] introduced a time-frequency-based 
tensor decomposition method to analyze inter-stimulus 
and inter-participant disparities in music-induced move-
ments while simultaneously considering group move-
ment directions. In a series of preliminary studies [17, 
18], we performed motor synergy analyses of street dance 

movements using PCA, and successfully demonstrated 
that a small number of PCs were able to characterize the 
similarities and differences of whole-body motor coor-
dination between basic movements (choreographies) in 
three major street dance genres.

Despite these results, conventional methods for syn-
ergy extraction may not be suitable for investigating syn-
ergetic motor activities that are essential for rhythmic 
dance movements induced by music beats. Because PCA 
and related methods do not explicitly take music beats 
into account, the synergies obtained may solely represent 
motor activities that are not related to music beats. How-
ever, rhythms or beats represented by dance movements 
may naturally be associated with synergetic motor activi-
ties that are aligned in time with music beats. Thus, alter-
native methods are needed to effectively analyze motor 
synergies that characterize dance movements.

In the current study, we present a simple analytical 
approach for extracting beat-aligned motor synergies 
from dance movements based on time-dependent PCA 
(TD-PCA), and demonstrate its validity with a large-scale 
motion dataset of various street dance genres, obtained 
from the AIST Dance Video Database [19]. Our proposed 
method begins by collecting short-time motion segments 
between two proximal music beats, each normalized 
(resampled) to have the same length. TD-PCA was then 
used to extract several PCs individually for every normal-
ized time point, which was expected to reveal synergetic 
motor activities at every particular offset to the beat tim-
ing. Both the synergy patterns and reconstruction lev-
els with several PCs, varying over the normalized time 
between beats, characterize the similarities and differ-
ences among street dance genres. In the present study, we 
further evaluated our method in terms of the alignment 
between synergy activations and music beats. Both TD-
PCA and PCA provide a novel approach for detecting 
kinematic beats [20–22], newly combined with the idea 
of motor synergies. Using cross-validation, kinematic 
beats detected with TD-PCA were shown to improve the 
alignment with music beats over that obtained using a 
previous method as well as PCA, quantitatively validat-
ing the use of beat-aligned motor synergies to investigate 
rhythmic dance movements.

Methods

Data description, pre‑processing, and featured body 
structure of dancers
Dance video datasets were obtained from the AIST 
Dance DB [19]. The database contains multi-camera 
motion videos of 10 street dance genres: “break,” “pop,” 
“lock,” “waack,” “middle hip-hop,” “LA-style hip-hop,” 
“house,” “krump,” “street jazz,” and “ballet jazz.” Thirty 
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dancers (15 female and 15 male; age 20–35), with a mini-
mum of 5 years of dance experience, were recruited. For 
each of the 10 genres, three dancers individually per-
formed 10 basic choreographies in the genre. A dancer 
performed each choreography four times, with varying 
music tempos selected from 80, 90, 100, 110, 120, and 130 
beats per minute to elicit different impressions for the 
same choreography. Thus, each of the 10 choreographies 
for a specific genre was performed 12 times in total. The 
dance videos were recorded using nine cameras for an 
average of 23 seconds per video, including a pre-roll and 
a post-roll of the actual dance performance. The recorded 
videos were then refined by precise editing to remove 
the unwanted parts and keep the main dance part with 
fixed 16 beats based on the algorithm for detecting the 
sequence of eight beat clicks that comes before the music 
in the raw recordings [19]. The refined video length of the 
main dance part varies depending on the tempo, where 
the average length was 9.25 seconds. The refined videos 
were used for our analysis. To visualize each choreogra-
phy, 10 key frames per choreography were extracted by 
DeepLabCut [24] with K-means algorithms.

Kinematic variables in this database were estimated 
previously, and are publicly available in the AIST++ 
dance dataset [21]. The Skinned Multi-Person Linear 
(SMPL) model [23] was used to represent the human 
body, featuring 24 body joints, including a root joint 
(Fig. 1). The marked points in the figure indicate motor 
joint positions, and the orange lines signify the skeleton 

structure. The letters “r” and “l” are used to distinguish 
the right and left limbs. Middle body joints include the 
head, neck, chest, spine, belly, and root, while the lower 
limb joints encompass both right and left hip, knee, 
ankle, and toes. The upper limb joints include both right 
and left inshoulder, shoulder, elbow, wrist, and hand. 
Each joint encompasses three-dimensional rotations cor-
responding to 3D dance movements.

We first translated the joint angles in the “axis-angle 
format” into Euler-angle format. The angle data were 
then smoothed in time by Savitzky-Golay Filter to elimi-
nate data noise caused by motion estimation, where a 
window size of 51 was used for filtering at a video frame 
rate of 60 fps and the order of the fitted polynomial was 
6. Next, the joint angle time-series of each choreography 
was segmented into short segments based on the timing 
of music beats identified by librosa [25], which yielded 16 
beats in each video. In this database, a total of 60 music 
pieces were used, for which we confirmed that librosa 
reliably detected music beats. Previous studies on music 
beat tracking have reported that librosa may not perform 
well for jazz music [26] and another modern approach 
such as Madmom [27] would be more reliable, whereas 
the 60 music pieces (even those for street/ballet jazz 
dances) did not include jazz music. To further validate, 
we calculated the F-measure [27] between the music 
beats detected by librosa and those by Madmom for 
every music piece used in each dance genre separately. 
The average F-measure for each dance genre was above 

Fig. 1 Featured body structure of dancers in SMPL format [23], including one root joint and 23 body joints. The marked points are motor joint 
positions. The orange lines represent the dancers’skeletons. The joints of the right and left limbs are abbreviated as “r” and “l.”
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0.96, which well indicated that the two beat tracking 
techniques performed very similarly on the music pieces 
used in this database.

Each segment was resampled (interpolated) to have 
the same number (45) of time points. This allowed motor 
synergies to be calculated across thousands of dance 
movement segments as trials. An overview of the data 
processing methodology is provided in Fig. 2.

Identifying beat‑aligned motor synergies by TD‑PCA
Motor synergies are conventionally studied by linearly 
decomposing kinematic data vectors into meaningful 
components, for which PCA is a fundamental technique. 
In the context of the current method, the decomposition 
model is given by

where xr(t) denotes the r-th instance (segment) of the 
vector timeseries of the n angular values ( n = 72 ), where 
the time was normalized between 0 and 1, sampled dis-
cretely at t = 1/(2T )+ k/T  for k = 0, 1, . . . ,T − 1 (with 
T = 45 ). The basis vectors ws represent time-invariant 
spatial synergy patterns and the corresponding compo-
nents crs (t) give their activations varying over both time 
and segments. ǫr(t) denotes the residual vector given the 
S components, where S denotes the number of synergies 
to be extracted. Given all of the segments, PCA identi-
fies the set of orthonormal synergy vectors w1,w2, . . . ,wS 
so that the s-th component maximally explains the total 
“variance” of data vectors that are unexplained by the 
preceding s − 1 components. Note that, because we do 
not subtract the mean of data vectors, the total vari-
ance actually means (a constant times) the sum of all the 
squared entries in xr(t) over all of the time points and 
segments.

(1)x
r(t) =

S
∑

s=1

wsc
r
s (t)+ ǫ

r(t),

The conventional approach essentially seeks motor syn-
ergies that are not particularly associated with music beats 
because the synergies of interest ws are supposed to be acti-
vated at arbitrary timings between beats. Here, we instead 
consider identifying beat-aligned motor synergies, each 
possibly associated with specific timing between beats, 
based on a time-dependent decomposition model, given by

Note that the model is the same as Eq. (1) except that 
synergy vectors ws(t) now depend on the normalized 
time t. To identify the time-dependent synergy vectors 
ws(t) , we used PCA in a time-dependent manner (i.e., 
TD-PCA). Specifically, given all of the segments, we 
applied PCA for every time point separately, so that the S 
synergies ws(t) at time t maximally explain the total vari-
ance (sum-of-squared entries) of data vectors collected 
only from the specific time point across segments. The 
overall procedure for beat-aligned synergy computation, 
including the beat-based segmentation and TD-PCA, is 
shown in Fig. 3.

Motor complexity and coordination from TD‑PCA results
Given the solutions of TD-PCA (i.e., synergies ws(t) and 
their activations crs (t) for all t), the first S terms in the right-
hand side of Eq. (2) approximately reconstruct data vectors 
x
r(t) in the left-hand side, with the reconstruction error 

(i.e., total residual error) minimized for each time t. The 
reconstruction error at time t is succinctly given by

where Xt is a data matrix collecting data vectors (column 
vectors) at time t from all of the segments, the S columns 
in Wt are synergy vectors at time t, and the corresponding 
S rows in Ct give their activations for all of the segments; 

(2)x
r(t) =

S
∑

s=1

ws(t)c
r
s (t)+ ǫ

r(t).

(3)E2
t := �Xt −WtCt�

2
F ,

Fig. 2 Data processing at the general level
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� · �F denotes the Frobenius norm (i.e., the sum of 
squared entries). Dividing by ‖Xt‖

2
F then subtracting from 

1, Eq. (3) yields a measure of reconstruction level, given 
by

which takes a value between 0 and 1, with Wt and Ct 
obtained by PCA.

A higher reconstruction level R2
t  by TD-PCA (with a 

fixed small S, typically S = 1 ) implies that the kinematic 
data vectors, collected from all of the segments, can be 
more effectively represented by a few synergies locally 
at time t. As a function of t, the reconstruction level was 
therefore used to illustrate how the local kinematic com-
plexity varies between beats for any specific motion col-
lection (e.g., each genre). Taking the average of R2

t  over 
time, we also evaluated the global complexity of given 
motion collections (e.g., for comparing between genres).

Motor coordination between body modules was also 
evaluated based on the TD-PCA solutions. Here, the 
symmetric joints on the right and left sides were treated 
as identical body modules to simplify interpretations. 
Given a TD-PCA solution (synergy vectors) Wt , we 
took the root mean square of three (single joint) or six 
(two bilateral joints) values within Wt for each module 

(4)R2
t = 1−

�Xt −WtCt�
2
F

�Xt�
2
F

,

(per column of Wt and at each time). Subsequently, 
each column was normalized to possess a unit norm. 
Note that this process also disambiguates the signs of 
synergy vectors that are arbitrary in PCA. These con-
densed synergy scores were employed in the forthcom-
ing section to scrutinize the modular coordination of 
dance movements, as illustrated in Figs. 6 and 8.

Kinematic beat detection on the basis of synergy 
activations
Kinematic beats can be identified as the points in time 
at which movement drastically slows down, character-
ized by a sudden decrease in movement magnitudes 
or a pronounced change in movement angles, between 
adjacent poses [20]. Specifically, kinematic beats can 
be estimated by the local minima of the kinetic veloc-
ity curve [21], where kinetic velocity is calculated as the 
Frobenius norm of velocities across joints.

In a previous study [21], the alignment between music 
beats and kinematic beats was evaluated with the beat-
alignment (BA) score, given by

(5)BA =
1

|Bx|

|Bx|
�

i=1

exp






−

min
∀t

y
j ∈B

y

�

�

�txi − t
y
j

�

�

�

2

2σ 2






,

Fig. 3 The procedures for synergy computation using TD-PCA: 1. Dance movements are segmented in alignment with music beats. 2. 
PCA computations are performed on each slice of the collected segments at a normalized time point. 3. Kinematic beats are estimated 
with the activation of a motor synergy (principal component; PC), selected by cross validation, and subsequently assessed in terms of beat 
matching
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where Bx =
{

txi
}

 and By =

{

t
y
j

}

 represent the time 
points of kinematic and music beats, respectively; we set 
σ = 3 in this study.

Here, we present a novel approach to detecting kin-
ematic beats based on synergy activations. Given a par-
ticular synergy vector w , selected appropriately, we first 
computed corresponding synergy activations by taking 
inner products between w and data vector (joint angles) 
x(t) at every time point, then finding the local minima 
of the absolute value of its first derivative over time. The 
synergy vector w may be obtained using either PCA or 
TD-PCA. In the case of PCA, the first PC’s synergy vec-
tor can simply be set as w . In the case of TD-PCA, it is 
further necessary to select one of the time-dependent 
first PC synergy vectors w(t) before taking the inner 
product. In the present study, we evaluated every synergy 
vector w(t) on each motion sequence specifically using 
the BA score as above, and selected the one that maxi-
mized the average score over all motion sequences in 
each genre. The underlying assumption of this method is 
that the synergies of maximum beat-alignment may arise 
at a particular timing (offset) between beats, depending 
on dance genres rather than specific choreographies in 
each genre.

We evaluated both the original method and our novel 
synergy-based method for kinematic beat detection using 
a “leave-one-choreography-out” cross-validation on the 
BA score for each genre. In each cross-validation run, 
we obtained a synergy vector (as above with either PCA 
or TD-PCA) from all of the motion data for nine chore-
ographies, and evaluated the synergy vector’s BA score 
on those of the remaining one choreography. This pro-
cess was repeated 10 times and the mean of the result-
ant 10 average BA scores was evaluated for each genre. 
For comparison with the original method, we visual-
ized the rate of change in the average BA scores from 
the original BAorig to the synergy-based BAsyn , i.e., 
(BAsyn − BAorig)/BAorig . Additionally, we conducted a 
similar comparison between PCA and TD-PCA using 
the rate of change from PCA to TD-PCA. The 95%-con-
fidence intervals of the rate of change in the average BA 
score are also displayed as shaded regions in Figs. 9, 10, 
11 below.

Results
Global and local complexities of dance movements
First, we evaluated the reconstruction accuracies using 
TD-PCA to measure the local (i.e., time-dependent) and 
global complexities of dance motions. Local complexity 
was assessed through the reconstruction level R2

t  , tak-
ing the value between 0 to 1, with a constant number of 
PCs (synergies) at every time point of TD-PCA; global 

complexity was computed as the average of local com-
plexity over time. See Section for details.

The global complexity was compared across differ-
ent genres, with the number of synergies varying up to 
10 (Fig. 4). The results revealed that, only with 10 motor 
synergies, the method was able to reconstruct over 80% 
of the 72-dimensional dance motion data (of a particu-
lar timing between beats), on average. Elevated recon-
struction levels indicate less complex dance movements, 
whereas lower levels signify higher complexity. In this 
regard, the two types of jazz dance genres (i.e., “street 
jazz” and “ballet jazz”) exhibited high complexity, where 
initial PCs achieved higher reconstruction levels for “bal-
let jazz” than those in “street jazz.” Three “old-school” 
dance genres, namely “break,” “waack” and “pop,” roughly 
appeared to be the second most complex genres, fol-
lowed by a group, including “middle hip-hop,” “LA-style 
hip-hop,” and “krump.” The “lock” and “house” dances 
were the two least complex genres.

Local or time-dependent complexity analysis with a 
few PCs may reveal how and at which timings between 
beats the motion data are dominated by the small num-
ber of corresponding synergies, as shown in Fig. A1. The 
timeseries of local complexity with only the first PC is 
shown in Fig.  5. Corresponding to the global complex-
ity at one synergy in Fig.  4, “street jazz” and “break” 
generally exhibited low reconstruction levels with a 

Fig. 4 Global complexity, i.e., average of time-dependent 
reconstruction accuracy over the 45 time points, versus the number 
of synergies (PCs) used for the reconstruction. Different colors 
indicate the 10 genres
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gradual increase followed by a decrease between beats. 
In contrast, “house” and “lock” generally exhibited higher 
reconstruction levels, with strikingly different patterns 
in their waveforms; “house” exhibited an approximately 
concave pattern with the peak around the center between 
the beats while “lock” exhibited an approximately convex 
pattern with high levels around the timing of beats. Intui-
tively, the approximately concave and convex patterns 
may correspond to the postural simplicity (dominated 
by a single synergy) at the middle of two proximal beats 
(“upbeats”) or at the timings on the beats (“downbeats”), 
respectively, potentially indicating two contrasting ways 
to get into the rhythm with synergetic body motions.

The other dance genres, except for “pop” and “bal-
let jazz,” also exhibited approximately concave patterns, 
while the magnitudes of their changes were smaller than 
those for “house” or “lock.” Although it was not very clear, 
“pop” exhibited an approximately convex pattern with 
a similar shape to that of the curve of “lock,” which may 
be related to the similarity between the two old-school 
dance genres. Notably, “ballet jazz” exhibited an approxi-
mately flat pattern (or weakly convex pattern) compared 
with the other genres, indicating that the postural com-
plexity in this dance genre is not strongly associated with 
specific timings between music beats.

Beat‑aligned motor synergies for different genres
Next, we analyzed in more detail the beat-aligned motor 
synergies, obtained by TD-PCA on the time-normalized 
motion segments between beats. As shown in Fig. 4, the 
first PC (synergy) already exhibited a high contribution 
(approximately 30–55%) in every genre, and the second 
PC also exhibited relatively large increments compared 
with subsequent PCs in many genres, indicating the rela-
tive significance of the first two synergies among all 72 
synergies. Thus, here we focus on the first two PCs in 
each genre to illustrate how our TD-PCA reveals the 
common and distinct features between genres. The key 
frames for the 10 choreographies for each genre are also 
given in Supplementary Material (Fig. A2) to aid an intui-
tive understanding of the actual motions.

The first two PCs obtained by TD-PCA and those 
obtained by conventional PCA are shown in Fig.  6 and 
Fig. 7, respectively. For each PC, the corresponding syn-
ergy pattern was summarized by taking a root mean 
square of the entries within each body module includ-
ing either one or two (bilateral) joints and then normal-
izing the vector of resultant values to have unit norm. 
As seen in the figures, the relative contributions by the 
15 modules were similar between TD-PCA and PCA. 
For instance, in either method, PC1 represents rela-
tively homogeneous coordination among modules, with 
notable differences in the root (pelvis) and elbow con-
tributions between genres. In contrast, PC2 emphasizes 
several specific modules, such as the root, elbow, and 
knee. Beyond conventional PCA, our TD-PCA method 
further revealed time-dependent contributions of each 
module between music beats. For example, the elbow’s 
contribution in the PC1 for “middle hip-hop,” as well as 
“house,” was the strongest around the normalized time of 
0.75, although in this visualization, the unbalanced over-
all contributions by the 15 modules hinder interpreta-
tions of each module’s time-dependent contributions.

To observe each module’s time-dependent contribu-
tion more clearly, we horizontally normalized the fluc-
tuations of each module in Fig. 6 so that the summation 
over all the normalized time points was one, as shown in 
Fig. 8. Notably, in PC1, three modules (the pelvis, head, 
and elbow) clearly exhibited time-dependent contribu-
tions that differed among the 10 genres. For example, a 
strong time-dependent contribution of the root (pel-
vis) was seen in “break,” “waack,” “street jazz” and “bal-
let jazz,” while a further time-dependence of the elbow, 
in addition to the pelvis, was seen in “pop” and “LA-style 
hip-hop.” The time-dependence of the root’s contribution 
was not strong in “lock,” “middle hip-hop,” “house” and 
“krump,” while a strong time-dependence of the elbow’s 
contribution was still evident in those genres. A notable 
time-dependence of the head’s contribution was seen in 

Fig. 5 Local complexity, i.e., time-dependent reconstruction 
accuracy, using the first synergy (PC). Different colors indicate the 10 
genres
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“lock.” Note that the actual timings when strong contri-
butions were seen varied between genres. The pelvis con-
tribution appeared to occur immediately after the music 
beat in “break” and “LA-style hip-hop,” while it appeared 
to be slightly delayed (within [0, 0.5]) in “pop” and “bal-
let jazz.” The pelvis contribution appeared to occur both 
just before and after a music beat in “waack” and “street 

jazz.” The pelvis module links upper and lower limb coor-
dination, potentially playing a pivotal role in rhythmic 
whole-body movements synchronized with music beats. 
The different timings after (or around) the music beat 
may therefore indicate how the body rhythm, induced by 
music beats, tends to be represented by the pelvis joint 
angle with a genre-specific offset after a beat. In contrast, 

Fig. 6 Time-dependent motor synergies of joint angles in 10 genres presented in a modular format

Fig. 7 Spatial motor synergies of joint angles in 10 genres, computed through PCA, presented in a modular format
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the elbow contributions varied within [0.5, 1] except for 
“pop,” potentially indicating their different roles from pel-
vis to express rhythms in dance movements. The contri-
bution of the head in “lock” was almost at the middle of 
two beats (upbeats), possibly related to the way in which 
this dance genre tends to use head (upper neck joint) 
movements to express the characteristic jerky, robot-like 
motions (see Fig. A2 and example movies at the website 
of AIST Dance DB).

In PC2, the time-dependent contributions were seen 
more commonly across joints or modules, although 
more complex, meaningful patterns can still be observed 
in the figure, compared with the first PCs. For instance, 
the time-dependence of root and elbow contributions 
was mostly not very strong, except for “break,” “pop” and 
“LA-style hip-hop,” timed just before the music beats. 
Additionally, in PC2, time-dependence of head contribu-
tions was seen in “break,” “middle hip-hop,” “waack” and 
“krump,” which was not evident in the first PCs, except 
for “lock.” Notably, the timings of the strong contribu-
tions of the root, elbow, and head were complementary 
to those in the first PCs. Another notable finding is that 
the extremity modules, namely the ankle, toe, wrist, and 
hand, were strongly correlated in the variation of their 
contributions between beats, except for “ballet jazz.” It is 
likely that the extremity modules tend to be used jointly 
to represent rhythmic movements throughout each cho-
reography, possibly resulting in highly correlated patterns 
in the time-dependent synergy weights. The exception of 
“ballet jazz” may indicate the intricate, non-synergetic 

control of the extremity joints in this dance genre. Fur-
ther genre-specific findings could potentially be obtained 
by exploring the patterns for each genre in more detail. 
For instance, the contributions of the belly, spine, chest 
and neck in the second PC of “lock” suggest their mutu-
ally synergetic activities to represent the genre’s charac-
teristic (robot-like) body movements. Interestingly, the 
peak timing of contribution was earliest in the belly, fol-
lowed by the spine and chest, and was the latest in the 
neck (followed by the head, as seen in the first synergy), 
reflecting the outward ordering of joints from the belly to 
the head.

Kinematic beat detection
The accuracy of kinematic beat detection may quan-
tify the synchronization between dance movements 
and music beats. To evaluate this approach, we used the 
beat alignment (BA) score as a measure of the alignment 
between the estimated kinematic beats and the music 
beats, and compared scores across different methods.

As shown in Fig.  9, the rate of change in average BA 
scores for TD-PCA’s synergy activation beats was positive 
for 7 out of 10 dance genres (e.g., for genres like “break,” 
“LA-style hip-hop,” “krump,” and “street jazz,” the rate 
of change exceeded 0.2. In a few exceptions (e.g., “pop,” 
“middle hip-hop” and “waack”) the improvement was not 
apparent. This finding could be attributed to factors such 
as the specific dance style or the complexity of the music 
beats in these genres.

Fig. 8 Time-dependent motor synergies of joint angles in 10 genres presented in a modular format
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Furthermore, as illustrated in Fig. 10, the rate of change 
in BA scores from PCA to TD-PCA also exceeded zero 
for the majority of genres, indicating that TD-PCA’s syn-
ergy activation beats better align with music-induced 
motions compared with the PCA approach. However, 
the improvement was not very large, as seen in the figure. 
In fact, Fig. 11 shows that even conventional PCA-based 
kinematic beat detection outperformed the original 

method. This means that the performance of kinematic 
beat detection can be substantially improved by intro-
ducing the concept of motor synergy with either con-
ventional or time-dependent PCA. Note that both types 
of PCA were newly examined here as methods for kin-
ematic beat detection.

Discussion
The current study presents a novel synergy-based 
approach for analyzing complex dance movements, 
offering important insights and implications in three 
key areas: movement complexity analysis, beat-aligned 
motor synergies, and kinematic beat detection. We first 
pre-processed the dance dataset, including data smooth-
ing, Euler angle format transformation, and beat-aligned 
segmentation of trials. TD-PCA was then proposed to 
extract motor synergies from these beat-aligned dance 
segments. Analysis of the reconstruction accuracies 
revealed significant differences across 10 dance genres, 
indicating different levels of local and global movement 
complexity. Notably, the first motor synergy activation 
was leveraged for kinematic beat detection, with the rate 
of change of BA scores demonstrating improved accuracy 
compared with existing methods.

Movement complexity has been discussed in previ-
ous research. However, a unique aspect of the current 
study is our novel application of the synergy method 
to analyze complex movements using time-dependent 
motor synergy. In the current results, the relatively low 
reconstruction error of the first synergy implies a high 

Fig. 9 Cross-validation of the rate of change of BA scores calculated 
from music beats and synergy activation beats (TD-PCA) vs. music 
beats and kinematic beats (original)

Fig. 10 Cross-validation of the rate of change of BA scores calculated 
using music beats and synergy activation beats with respect 
to TD-PCA vs. PCA

Fig. 11 Cross-validation of the rate of change of BA scores calculated 
from music beats and synergy activation beats (PCA) vs. music beats 
and kinematic beats (original)
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degree of movement complexity in street dance. Dance 
postures may exhibit considerable variability between 
choreographies within each dance genre. Unlike simple 
movements, each choreographed dance movement also 
exhibits high postural diversity and variation across 
segments. The variability may be exacerbated by vary-
ing music tempos influencing movement speed, joint 
rotation speed, and choreography execution accuracy. 
Individual dancer skill and experience may also impact 
these variations. More detailed analyses of the source 
of variability and complexity will be examined our 
future research.

In the present study, we proposed TD-PCA to extract 
beat-aligned motor synergies for a better understand-
ing of dance movements. Conventional PCA extracts 
spatial motor synergies that capture the coordination 
modes of individual body joints, but may fail to ade-
quately represent the temporal dependencies inherent 
in complex, rhythmic movements like dance. Our TD-
PCA approach overcomes this limitation by explicitly 
modeling the temporal variability induced by music 
beats, enabling a more accurate representation of the 
intricate temporal body coordination patterns that 
characterize dance movements. This novel methodol-
ogy can be generalized to other complex movements 
with clear temporal dependencies, such as various 
sports disciplines.

To the best of our knowledge, previous studies have 
not extensively examined methods for improving kin-
ematic beat estimation, despite its importance for 
interactive music-movement systems, performance 
analysis tools, and rehabilitation technologies lever-
aging rhythmic movements. Our results show syn-
ergy activation beats based on either conventional 
PCA or TD-PCA outperformed original kinematic 
beat detection in tracking music beats, underscor-
ing synergies’effectiveness in capturing music-induced 
motions via low-dimensional decomposition. TD-
PCA’s improvement over PCA was minor but evident in 
some genres. Additionally, even our use of conventional 
PCA constitutes a new contribution in the context of 
kinematic beat detection. The main benefit of using 
TD-PCA was seen in its capability to analyze music-
induced temporal variability in motor synergies, while 
a possibility of further enhancing beat tracking perfor-
mance using TD-PCA remains (e.g., with better motion 
features or synergy selection strategies). Detailed 
exploration will be included in our future work.

While the current study focused on street dance gen-
res, the insights gained from our synergy-based analy-
sis could be extended to other forms of dance, as well 
as other complex, rhythmic movements in domains like 

sports, performing arts, and rehabilitation. By captur-
ing the intricate interplay between movement com-
plexity, temporal dependencies, and external rhythmic 
cues, our methodology holds promise for advancing our 
understanding of human motor control and coordination 
across a wide range of applications.

Conclusion
In conclusion, this study presents a novel approach for 
analyzing and understanding the complex movements of 
street dance through beat-aligned motor synergy patterns 
and reconstruction accuracy. The extracted beat-aligned 
motor synergies enabled a comprehensive evaluation of 
motor coordination, complexity, consistency, similar-
ity, and variability in these dance forms. By understand-
ing the underlying motor synergies and coordination 
patterns, dancers and coaches can optimize training 
programs, and improve overall performance. In future, 
we aim to develop novel approaches to further improve 
the accuracy of kinematic beat detection, leveraging 
the insights gained from this study. In addition, we plan 
to explore individual differences in dance performance 
through motor synergy analysis and develop advanced 
dimension reduction techniques tailored for complex 
dance movement analysis. This work lays the foundation 
for a deeper understanding of the intricate dynamics of 
street dance movements and opens up exciting avenues 
for future research in movement analysis, motor coor-
dination, and performance optimization in the realm of 
dance and other complex sports domains.
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