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Abstract
Stroke is a serious cerebrovascular disease, and rehabilitation following the acute phase is particularly crucial. 
Not all rehabilitation outcomes are favorable, highlighting the necessity for personalized rehabilitation. Precision 
assessment is essential for tailored rehabilitation interventions. Wearable inertial measurement units (IMUs) and 
deep learning approaches have been effectively employed for motor function prediction. This study aims to use 
machine learning techniques and data collected from IMUs to assess the Fugl-Meyer upper extremity subscale for 
post-stroke patients with motor dysfunction. IMUs signals from 120 patients were collected during a clinical trial. 
These signals were fed into a gated recurrent unit network to complete the scoring of individual actions, which 
were then aggregated to obtain the total score. Simultaneously, on the basis of the internal correlation between 
the Fugl–Meyer assessment and the Brunnstrom scale, Brunnstrom stage prediction models of the arm and hand 
were established via the random forest and extremely randomized trees algorithm. The experimental results show 
that the proposed models can score Fugl-Meyer items with a high accuracy of 92.66%. The R2 between the doctors’ 
score and the model’s score is 0.9838. The Brunnstrom stage prediction models can predict high-quality stages, 
achieving a Spearman correlation coefficient of 0.9709. The application of the proposed method enables precision 
assessment of patients’ upper extremity motor function, thereby facilitating more personalized rehabilitation 
programs to achieve optimal recovery outcomes.
Trial registration: Clinical trial of telerehabilitation training and intelligent evaluation system, ChiCTR2200061310, 
Registered 20 June 2022-Retrospective registration.
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Introduction
Stroke is the third leading cause of disability world-
wide [1]. Each year, ≈ 795,000 people experience a new 
or recurrent stroke [2]. Hemiplegia is the most com-
mon post-stroke symptom in most cases, and the upper 
extremities (UE) of hemiplegic patients are more seri-
ously affected than their lower extremities (LE) are [3, 
4]. To restore motor function, stroke survivors need to 
participate in rehabilitation programs in hospitals, out-
patient clinics, or nursing facilities that provide profes-
sional guidance and equipment resources, which means 
that stroke rehabilitation requires a sustained and coor-
dinated effort from a large team and expensive costs [5, 
6]. Rehabilitation interventions are beneficial across a 
number of neurological conditions because they result in 
a decrease in the severity of disability [7] However, not all 
interventions report effective outcomes [8]. The need for 
developing patient-specific interventions is paramount, 
and subject-specific interventions are based on precise 
assessment of the patient [9–11]. Importantly, rehabilita-
tion specialists should be provided with tools to monitor 
the motor recovery process, assess whether the ongoing 
intervention is leading to the anticipated clinical results, 
and adjust the intervention if needed.

The Fugl-Meyer assessment (FMA) [12], Brunnstrom 
stage [13], action research arm test (ARAT) [14], and 
wolf motor function test (WMFT) [15] are commonly 
used assessment tools. In particular, the FMA is consid-
ered one of the most comprehensive quantitative mea-
sures of motor impairment [16]. Unfortunately, regularly 
conducting these assessments throughout the entire 
intervention period is both time-consuming and imprac-
tical [17]. Traditional motor function assessments, such 
as the FMA, often require skilled clinicians to perform 
detailed evaluations during each session, which may last 
30 min [4, 18]. Moreover, the results of these assessments 
are often susceptible to subjective bias, as they rely on cli-
nicians’ judgment in scoring patients’ performance [19]. 
Factors such as clinician experience, interpretation of 
movement quality, and even mood or fatigue levels can 
influence scoring, leading to variability and inconsisten-
cies in the evaluation process. To address these issues, 
an increasing number of researchers have collected and 
recorded motion data from patients with motor dysfunc-
tion via wearable devices to carry out assessments [20–
22]. Wearable device technology offers the advantages of 
real-time, noninvasive continuous monitoring of patient 
activity, providing objective data support, and enabling 
personalized, remote rehabilitation possibilities [23–25]. 
In motion monitoring, wearable devices based on IMUs 
are extensively utilized in research and clinical settings 
[26, 27], which enables longitudinal assessment of UE 
motor function [28], thus facilitating personalized reha-
bilitation interventions [29, 30].

Zhang et al. [31] developed a desktop robot that col-
lected motion signals from patients and used these sig-
nals to build three machine learning models to assess 
the WMFT. Adans Dester et al. [17] employed IMUs to 
collect motor signals from stroke and traumatic brain 
injury patients and developed machine learning models 
to assess the Functional Ability Scale (FAS). They then 
used the predicted FAS scores along with motion signals 
to build a model via balanced random forests to com-
plete the FMA. The coefficient of determination between 
the predicted and actual scores reached 0.86. While the 
above studies have made significant progress, they often 
face limitations in practical clinical application for two 
reasons. First, the limited number of patients in their 
study reduces the robustness and stability of the model. 
Second, they employed traditional machine learning 
methods for assessment. Traditional machine learning 
models rely heavily on human expertise for feature selec-
tion, potentially missing complex and subtle patterns in 
the data that could improve predictive performance.

Recurrent neural networks (RNNs) are a class of deep 
learning algorithms designed to handle sequential signals 
[32]. They can directly classify or predict signals without 
feature extraction, ensuring an end-to-end processing 
flow and improved accuracy. Long short-term memory 
(LSTM) [33] is among the most commonly used RNN 
algorithms. Lee et al. [34] applied LSTM networks to 
process IMU-based gait signals and assess gait fatigue. Li 
et al. [35] proposed a multimodal evaluation framework 
using LSTM to quantitatively assess hand motor func-
tion in post-stroke hemiplegia patients. Compared with 
machine learning algorithms, deep learning algorithms 
like LSTM have a larger number of parameters, requiring 
more samples to ensure the creation of an optimal model. 
However, collecting large amounts of clinical data is 
extremely challenging. Therefore, the application of deep 
learning models in motion signal-based motor function 
assessment, especially for stroke rehabilitation, remains 
underexplored.

To establish a novel system that assists doctors in con-
ducting precise rehabilitation assessment, this study 
introduces a sensor network and accompanying deep 
learning-based motor function assessment models. First, 
we conducted a clinical trial involving 120 stroke patients 
in which wearable devices were used to collect motion 
signals during the clinical assessment process, ensuring 
an adequate sample size for subsequent model develop-
ment. Then, on the basis of the data, we developed a deep 
learning model based on gated recurrent units (GRUs) to 
assess UE motor function. The GRUs is a variant of the 
RNN, but it requires fewer parameters than the LSTM 
does, thus reducing the risk of overfitting. We totally 
achieved the following two objectives: (1) precise scor-
ing of individual actions in the FMA and comprehensive 
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assessment of UE function and (2) classification of the 
Brunnstrom stage for arms and hands in stroke patients. 
Compared with previous studies, this study has the fol-
lowing advantages:

(1) Large Sample Size for Robustness and Clinical 
Applicability: With a large sample size, this study 
enhances the model’s robustness and generalizability, 
overcoming the limitations of previous studies 
with smaller cohorts. A larger dataset improves the 
model’s adaptability to diverse patient conditions, 
increasing its applicability in real-world clinical 
settings.

(2) Deep Learning for Enhanced Model Performance: 
By utilizing deep learning techniques, this study 
removes the need for manual feature extraction, 
enabling the model to automatically learn complex 
patterns from raw motion signals. This method 
captures nonlinear relationships and enhances the 
model’s predictive performance, leading to more 
accurate motor function assessment across various 
patient profiles.

Materials and methods
Participants
The data used for model development and validation 
were obtained from a clinical trial conducted at Tangdu 
Hospital and Xi’an Gaoxin Hospital, which was approved 
by the hospital’s Ethics Committee. The clinical trial reg-
istration number is ChiCTR2200061310. A total of 120 
patients were enrolled in the trial, and all participants 
signed the informed consent form. The patient criteria 
are as follows, and their details are presented in Table 1.

The inclusion criteria for patients were as follows: (1) 
stroke confirmed by CT or MRI; (2) aged between 30 
and 75 years; (3) stable recovery with motor dysfunction 
caused by stroke, 15–180 days after onset (convalescent 
period), with Brunnstrom upper extremity and/or lower 
extremity motor function grades II‒VI; (4) ability to fol-
low the research protocol; and (5) ability to understand 
the study’s purpose, adhere to the protocol, and provide 
informed consent.

The exclusion criteria for patients were as follows: (1) 
patients with significant cognitive or consciousness dis-
orders that would prevent completion of the FMA; (2) 
patients with other major limb injuries, such as fractures, 
severe arthritis, amputations, etc.; (3) patients with joint 
contractures; (4) patients with disabilities as defined by 
law (e.g., blindness, deafness, mutism, intellectual dis-
abilities, mental disorders, and physical disabilities); and 
(5) patients with severe comorbidities that were deemed 
unsuitable for participation by the researcher.

Data collection protocol
Data collection devices
The collection system consists of wearable devices and 
a computer, as shown in Fig.  1. The wearable devices 
include two rehabilitation armbands and one rehabili-
tation glove. The armbands were equipped with IMUs. 
The IMUs were constructed via the MPU9250 chip 
(InvenSense, “America”). The IMU accelerometer fea-
tured a measurement range of ± 2 g, the IMU gyroscope 
offered 16-bit resolution with a range of ± 250°/s, and the 
IMU magnetometer had 14-bit resolution with a range 
of ± 4800 µT. Through chip computation, the output sig-
nals are Pitch, Yaw, and Roll, which represent the sen-
sor orientation as follows: Yaw indicates rotation about 
the vertical axis, Pitch indicates rotation about the hori-
zontal transverse axis, and Roll indicates rotation about 
the longitudinal axis. Therefore, they can reflect the rota-
tional state of the body in three-dimensional space and 
are commonly used to describe the range of motion and 
angles of joints and arms. The glove was equipped with 
piezoresistive bending sensors and IMUs positioned at 
the back of the five fingers and the dorsum of the hand, 
respectively. The piezoresistive sensors monitor finger 
flexion, and the IMUs track wrist movements. The piezo-
resistive sensors exhibit a resistance of 25 kΩ at 180° in 
a stationary state and 125 kΩ at 90° at full bending. The 
output signals for the glove are the flexion signals of five 
fingers (F1–F5) and the pitch of the hand. The sampling 
rate of the aforementioned sensors is 50 Hz.

The rehabilitation armbands are worn on the upper 
arm (S1) and forearm (S2) on the hemiplegic side. The 
rehabilitation glove is worn directly on the hemiplegic 
hand (S3). The ZigBee protocol was chosen for wireless 
transmission, which meets the requirements of high fault 

Table 1 Basic information of the 120 patients
Characteristics Mean ± Standard 

Deviation
Min–Max 95% 

Confi-
dence 
Interval

Age (year) 56.47 ± 9.70 33.00–74.00 54.71–
58.22

Height (cm) 167.80 ± 6.95 150.00–
180.00

166.50–
169.00

Weight (kg) 69.68 ± 10.95 48.00–114.00 67.69–
71.66

Pulse (/min) 77.59 ± 7.95 60.00–110.00 76.16–
79.03

FMA Score (point) 43.28 ± 25.09 13.00–97.00 33.68–
48.54

UE FMA Score (point) 36.76 ± 18.65 7.00–66.00 31.67–
41.85

Characteristics Vaule
Gender (male/female) 86/34
Stroke type (cerebral infarction/hemorrhage) 52/68
Disease stage (subacute/chronic) 0/120
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tolerance and low cost. The ZigBee receiver can receive 
signals from the sensors in real time and store them on a 
personal computer, which handles data storage and per-
forms signal analysis.

Actions for data collection
The upper extremity Fugl-Meyer assessment (UE-FMA) 
subscale includes 33 actions for assessment (items 1 to 
33), with scores of 0, 1, or 2, where 0 indicates the inabil-
ity to perform the action, 1 indicates partial comple-
tion, and 2 indicates smooth execution. Since all patients 
included in our study were at Brunnstrom Stage II-VI 
(Patients in the stage I are unable to complete the clini-
cal trial due to physical reasons), they exhibited reflex 
abilities and thus scored full marks for reflex-related 
actions during data collection. Therefore, we excluded 
three reflex-related actions (Original items 1, 2, and 18). 
The original item 26 is a grip strength test that requires 
a force sensor for data collection; therefore, this item 
was excluded. Items 31 to 33 assess different aspects of 
the same action. Thus, we retained item 31 and removed 
items 32 and 33. In total, after excluding the six items 
mentioned above, we retained 27 items with 27 different 
actions, for which motion data were collected during the 
execution of these 27 assessment tasks. A description of 
these 27 actions is provided in Table 2.

Data Collection Procedure
Once the patient was ready, the physical therapist guided 
the patient to wear the wearable devices and powered 
them on. Each action was performed 3–5 times. The 
therapist then instructed the patient to perform the 27 
actions sequentially. The physical therapist used a timer 
to record the start and end times for each stable action 
performed by the patient, ensuring a timing error of no 
more than 0.5 s. During this process, the physical thera-
pist scored each action on the basis of the standardized 
assessment criteria. Moreover, the wearable devices cap-
tured the patient’s motion signals in real time, transmit-
ted them to a wireless receiver via the ZigBee protocol, 
and saved them on a computer.

The enrolled subjects participated in two data col-
lection sessions, the first at baseline and the second at 
discharge, which occurred 3 weeks after the baseline 
assessment. All 120 patients participated in the first data 
collection session, resulting in 120 samples. For the sec-
ond data collection session, 3 weeks later, a few patients 
were missing, resulting in 102 samples, resulting in 222 
total collected samples. Each sample consists of data 
from 27 actions. The data for each action can be repre-
sented as X∈R12×N, where 12 represents the number of 
signals and N represents the signal length.

Fig. 1 The data collection devices for the experiment
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Signal processing
Preprocessing consists of the following steps, as shown 
in Fig.  2. The first step is the segmentation of valid sig-
nals, which aims to identify and isolate the relevant signal 
segments. During the data collection, the therapist used 
a timer to record the time points of the patient’s stable 
actions. The valid signals are then segmented by match-
ing the recorded starting point and end point with the 
sampling points collected by the wearable device.

The second step is filtering and sampling. A digital But-
terworth bandstop filter was applied to eliminate power 
frequency interference, with a cutoff frequency of 50 Hz 
and a stopband gain of -40 dB. A moving average filter 
was used to remove random noise, with a filter width 
set to 10. Owing to the varying speeds of movements 
across patients, the length of valid signals also varies. 
Linear sampling was applied to resample the segmented 
data, and the signal length was fixed to 300 to meet the 

requirements of subsequent deep learning algorithms. 
The choice of a fixed length of 300 was based on two fac-
tors: first, the deep learning algorithm (RNN) requires 
inputs of uniform length, and second, the average signal 
length was approximately 300. Then, the resampled sig-
nals undergo zero-mean normalization, where the mean 
of the data is subtracted, centering the data around zero.

The third step addresses handling missing signals. Data 
collection was performed entirely by the therapist, with 
no involvement of engineering personnel. Occasion-
ally, the therapist made operational errors, leading to the 
absence of certain signals for some patients (approxi-
mately 2% missing, with at most one missing action for 
one patient). The procedure for handling missing signals 
is as follows: for the i-th sample where the j-th movement 
signal is missing and its movement score label is s (where 
s = 0,1,2), one-tenth of the samples with the same label s 
and no missing signals are randomly selected. The mean 
of the missing signal is then computed from the selected 
samples, and the original missing value is replaced by this 
mean.

Upper extremity assessment algorithm
The process of constructing the UE rehabilitation assess-
ment algorithm on the basis of motion signals is shown 
in Fig. 3. First, 27 GRU networks were developed, one for 
individual actions, to generate individual scores. These 
scores were then summed to calculate the total upper 
score. Subsequently, arm-related scores were extracted 
and used with a tree-based model for arm Brunnstrom 
stage prediction and hand-related scores were utilized for 
hand Brunnstrom stage prediction.

Scoring models for the UE-FMA subscale
Each item in the UE-FMA subscale represents specific 
motor functions, with motion signals differing in compo-
nents. We utilized the GRU network, a variant of the tra-
ditional RNN, to build individual scoring models for each 
item. The GRU network comprises multiple GRU units, 
which offer a simpler architecture than conventional 
LSTM units do while effectively capturing long-term 
dependencies in sequential data. The input to the net-
work is a preprocessed signal sample X∈R12×300={x1,x2…
x300}, where each timestamp xi represents a feature vec-
tor. The hidden state at the final timestamp is passed 
through a fully connected layer and a Softmax layer to 
produce the output—the item score. We constructed 27 
GRU networks, one for each item, resulting in 27 out-
puts. The sum of these outputs provides the total score 
for the UE-FMA subscale.

The GRU network employs a bidirectional approach, 
processing signals in both forward and backward direc-
tions to comprehensively capture temporal dependen-
cies. Owing to the uneven distribution of stages among 

Table 2 The description of the 27 actions
Action ID Action Description
A1 Shoulder elevation
A2 Shoulder retraction
A3 Shoulder abduction (at least 90°)
A4 Shoulder external rotation
A5 Elbow flexion
A6 Forearm supination
A7 Shoulder adduction and internal rotation
A8 Elbow extension
A9 Forearm pronation
A10 Hand touching the lumbar spine
A11 Shoulder flexion to 90°(with elbow joint at 0°)
A12 Forearm pronation or supination (with shoulder joint at 

0° and elbow joint at 90°)
A13 Forearm pronation (with shoulder abduction at 90°and 

elbow joint at 0°)
A14 Forearm pronation and supination (with shoulder flex-

ion ranging from 90 to 180°and elbow joint at 0°)
A15 Forearm pronation or supination (with shoulder flexion 

between 30 to 90°and elbow joint at 0°)
A16 Wrist dorsiflexion (with elbow joint at 90°and shoulder 

joint at 0°)
A17 Wrist flexion and extension (with elbow joint at 90°and 

shoulder joint at 0°)
A18 Wrist dorsiflexion (with elbow joint at 0°and shoulder 

joint at 30°)
A19 Wrist flexion and extension (with elbow joint at 0° and 

shoulder joint at 30°)
A20 Wrist circumduction
A21 Finger flexion (flexion of all fingers together)
A22 Finger extension (extension of all fingers together)
A23 Thumb adduction with all joints at 0 position
A24 Thumb pinch (holding a pencil with the thumb)
A25 Grasp a cylindrical object
A26 Grasp a spherical object
A27 Finger-to-nose test (performed five times consecutively)
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the 120 patients, a large proportion of scores were clus-
tered around 0 and 1, resulting in data imbalance. To 
address this issue, we implemented a data balancing 
strategy during model training. Specifically, we used 
upsampling of the minority classes in the training set to 
achieve a more balanced data distribution across all cat-
egories. In this process, we replicated samples from the 
underrepresented classes to increase their frequency, 
ensuring that each class contributed more equally to the 
training process. Additionally, we applied a random sam-
pling technique where the samples in the minority classes 
were randomly selected with replacement until the class 

distribution approached that of the majority class. To 
avoid overfitting, we also monitored the performance 
on the validation set and adjusted the upsampling strat-
egy as necessary. By doing so, we aimed to improve the 
model’s ability to generalize and reduce the bias toward 
the majority classes.

Prediction models for the arm and hand brunnstrom stage
Intrinsic correlations exist between various motor func-
tion scales [36]. Considering the intrinsic correlations 
between the FMA and Brunnstrom stage, we used the 

Fig. 3 The pipeline of building the upper extremity rehabilitation evaluation models

 

Fig. 2 The pipeline of data preprocessing
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scores from the 27 items in the UE-FMA to predict the 
Brunnstrom stage of the arm and hand.

22 arm-related items and 8 hand-related items were 
identified out of the 27 actions. For arm Brunnstrom 
stage prediction models, we used the scores of these 22 
items and their total score, totaling 23 features, to build 
the prediction model. For hand Brunnstrom stage pre-
diction models, we used the scores of the 8 items and 
their total score, totaling 9 features, to build the predic-
tion model. Considering the large number of features, we 
applied principal component analysis (PCA) for dimen-
sionality reduction. The final feature dimensions were 
reduced to six.

The random forest (RF) and extremely randomized tree 
(ERT) algorithms were employed to build the prediction 
models. Both algorithms use multiple decision trees to 
form the model and combine their outputs for final pre-
dictions. They can be used for classification and regres-
sion tasks and perform well on nonlinear problems. The 
RF performs sampling with replacement and feature 
selection randomization, selecting the best split point at 
each node, resulting in lower bias but higher computa-
tional cost. In contrast, ERT do not sample the data, but 
use the entire dataset and randomly select split points. 
They exhibit slightly higher bias but lower variance, faster 
training speed, and better resistance to overfitting. The 
model uses the above features as inputs and outputs the 
Brunnstrom stage.

Model establishment and validation
The data were split into training and testing datasets at 
a 3:1 ratio. The GRU networks were built and trained via 
PyTorch 2.1.2. The RF and ERT models were built via 
Scikit-learn. The model hyperparameters are shown in 
Table 3.

The accuracy, recall, precision, and F1 score were 
employed to evaluate the performance of the individual 
movement scoring model; the coefficient of determina-
tion (R2) and root mean square error (RMSE) were used 
to evaluate the performance of the scoring models for the 
UE-FMA subscale; and the accuracy, recall, precision, F1 
score, and Spearman correlation were used to evaluate 

the performance of the prediction model for the arm & 
hand Brunnstrom stage.

Accuracy (Ac) refers to the proportion of correctly 
predicted samples to the total number of samples. Recall 
(Re) refers to the proportion of samples correctly pre-
dicted as positive cases to the total number of actual 
positive cases. Precision (Pr) refers to the proportion of 
samples correctly predicted as positive cases to the total 
number of predicted positive cases. The F1 score is the 
harmonic mean of precision and recall and is used to 
provide a balanced evaluation of the performance of clas-
sification models. The coefficient of determination (R²) 
indicates the degree of fit of the model to the observed 
data. The root mean square error (RMSE) represents the 
average deviation between the observed values and the 
values predicted by the model. Spearman correlation is 
a nonparametric measure of the strength and direction 
of association between two ranked variables. Pearson 
correlation requires data to be continuous, linear, and 
normally distributed, whereas Spearman correlation is 
based on ranks and is suitable for nonnormally distrib-
uted data, particularly when the relationship is nonlinear 
or when the data are ordinal. Since the Brunnstrom stage 
is noncontinuous, have ranking features, and is typically 
ordinal, Spearman correlation is more appropriate for 
measuring the strength and direction of the relationship 
between the predicted and true Brunnstrom stage values.

Results
This study constructed 27 GRU networks to score the 27 
items in the UE-FMA. The performance of these models 
is illustrated in Fig. 4. Figures 4(A), 4(B), 4(C), and 4(D) 
represent the accuracy, recall, precision, and F1 score of 
the 27 models, respectively (detailed values are provided 
in the appendix). The blue bars represent the results 
without applying the data balancing strategy, whereas the 
orange bars represent the results after applying the strat-
egy. With the exception of a few items, the model per-
formance improved after the data balancing strategy was 
implemented.

The total UE-FMA score was obtained by summing the 
scores of the 27 models. Figure  5 shows the RMSE and 
R² values comparing the total scores derived from the 
proposed models with those assessed by the therapists. 
Figure 5(A) shows the results without applying the data 
balancing strategy, with an R² of 0.9774 (p < 0.001) and an 
RMSE of 2.8347, whereas Fig. 5(B) illustrates the results 
with the strategy applied, with an improved R² of 0.9838 
(p < 0.001) and a reduced RMSE of 2.4016.

The scores of the 27 items were used as features to con-
struct RF and ERT models, capturing the relationship 
between FMA and Brunnstrom stage for both the arm 
and hand. Table 4 presents the performance of the pre-
diction model using RF, while Table 5 presents the results 

Table 3 The hyperparameters when building the models
Model Hyperparameter Value
GRU Learning Rate 0.01

Batch Size 16
Epochs 50
Optimizer Adam

RF Number of Trees 30
Max_depth 6

ERT Number of Trees 30
Max_depth 6
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with ERT. The ERT model outperformed the other mod-
els for both arm and hand stage prediction, achieving 
accuracies of 76.72% and 82.09%, with Spearman correla-
tion coefficients of 0.9475 and 0.9709, respectively.

Discussion
In summary, through wearable devices and intelli-
gent algorithms, scoring models for the UE-FMA and 
Brunnstrom stage prediction models for the arm and 

Fig. 4 The performance of the 27 GRU networks
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hand were developed. These models demonstrate prom-
ising performance in evaluating motor function in stroke 
patients, offering the potential to be used in clinical prac-
tice to assess UE motor function. By leveraging wearable 
devices, these models can be deployed in various clinical 
settings or even at home, making it easier for patients 
to undergo continuous monitoring and rehabilitation. 
This could significantly reduce the burden on clinicians, 
allowing them to focus more on personalized treatment 
plans on the basis of accurate, real-time data.

Upon reconsidering the scoring criteria for each item, 
we found that the boundaries between 0 and 1 point, 
as well as between 1 and 2 points, can be ambiguous in 
clinical scoring. For example, for the criterion of elbow 
extension, a score of 0 indicates an inability to perform 
the movement, a score of 1 indicates that the elbow can 
bend 90 degrees, and a score of 2 indicates that it can 
bend 180 degrees. However, according to the therapists’ 
descriptions, the actual scores are often within ranges. 
For example, one therapist might define 0–45 degrees 
as 0 points, 45–135 degrees as 1 point, and more than 
135 degrees as 2 points. Moreover, the defined ranges 
vary across therapists, and subjective factors can lead 

to different final evaluations. This phenomenon occurs 
because the FMA uses a discrete three-point scale for 
each item, while the movement performance is continu-
ous, leading to a ceiling effect [37, 38]. To address this 
issue, refining the scoring system for each item to a deci-
mal level could provide a solution. Finer scoring not only 
addresses the ceiling effect but also enables a more pre-
cise evaluation of the patient’s motor function. Moreover, 
the ceiling effect may mitigate the reduction in patients’ 
motivation for rehabilitation. However, finer grading sig-
nificantly increases the difficulty of clinical assessment, 
and its clinical applicability remains to be evaluated. 
Nonetheless, the model we proposed achieved relatively 
good performance at the three-point scale, providing a 
foundation for future efforts to refine the scoring by engi-
neering methods.

On the basis of the scores for the 27 items, this study 
established Brunnstrom stage prediction models for the 
arms and hands. Although the prediction accuracy is not 
very high, the discrepancies between the misclassified 
samples and their true labels are small, with at most a 
1-stage difference. This is reflected by the Spearman cor-
relation coefficient between the model’s predicted stages 
and the true labels. The performance of the models estab-
lished via ERT outperforms that of RF. This is primarily 
due to data imbalance. The ERT model performs better 
at handling imbalanced datasets because it introduces 
more randomness in selecting features and split points 
during construction, resulting in greater diversity among 
the trees. This diversity reduces model bias and helps 
to better address minority class samples in imbalanced 
datasets. One of the most common challenges in devel-
oping clinically relevant deep learning models is data 
imbalance. While collecting more data from minority 
groups seems to be the most straightforward approach, 

Table 4 The accuracy, recall, precision, F1-score, and Spearman 
correlation coefficient of the RF model

Ac Re Pr F1 Spearman
Arms 73.20% 64.97% 64.12% 62.01% 0.9368(p<0.001)
Hands 79.49% 64.77% 67.26% 61.77% 0.9633(p<0.001)

Table 5 The accuracy, recall, precision, F1-score, and Spearman 
correlation coefficient of the ERT model

Ac Re Pr F1 Spearman
Arms 76.72% 60.31% 60.23% 58.07% 0.9475(p<0.001)
Hands 82.09% 68.63% 69.48% 65.02% 0.9709(p<0.001)

Fig. 5 The RMSE and the R2 between the total upper extremity FMA scores
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it is difficult to implement clinically, as patient distribu-
tions are inherently imbalanced in practice. Therefore, 
in engineering, employing balancing strategies or using 
algorithms specifically designed for imbalanced datasets 
becomes the optimal solution.

Importantly, each item of the FMA reflects the syn-
ergistic relationships between different movements. 
Movements within these synergies are characterized 
by coordinated patterns of muscle activity, such as flex-
ion synergy or extension synergy, which involve mul-
tiple joints working together in a specific pattern. When 
applying PCA to reduce the dimensionality of features, 
it is essential to recognize that the specific components 
resulting from dimensionality reduction do not directly 
correspond to any specific synergy or movement pattern. 
This is a limitation of PCA, as the interpretability of the 
features becomes less transparent, and the direct asso-
ciation between synergies and the reduced components 
becomes unclear. While PCA is effective in reducing 
dimensionality and preventing overfitting, it can com-
plicate the precise interpretation of specific synergies or 
movement patterns in terms of their contribution to the 
final results. In summary, if we have sufficiently balanced 
raw data and a large enough sample size, we do not need 
any additional engineering remedies, as such methods 
often come with side effects. However, even though the 
inclusion of 120 patients in our study far exceeds that 
of other studies, we still had to employ such methods to 
address issues arising from imbalanced sample distribu-
tion and insufficient sample size.

Another limitation is that the current research lacks 
a fully integrated software platform that could facilitate 
clinical application. This study has only completed the 
design of the hardware system and the development of 
the evaluation algorithm, without completing the soft-
ware platform development. This significantly limits its 
clinical application. In future work, we plan to develop 
a fully integrated software platform to address this gap. 
The platform seamlessly integrates the hardware system 
with the evaluation algorithm, providing a user-friendly 
interface for the complete process of data collection, 
analysis, and output of evaluation results. This will 
greatly reduce the workload of clinicians and minimize 
subjective influence in the evaluation. Moreover, we will 
further optimize the system functions on the basis of 
clinical needs, such as adding personalized evaluation 
modules, automatically generating reports, and inte-
grating remote monitoring and rehabilitation guidance 
modules, thereby increasing the system’s practicality and 
clinical applicability.

Conclusion
In this study, we developed an upper extremity motor 
function assessment system. Rehabilitation wearable 
devices were employed to collect motion signals from 
stroke patients. GRU networks were employed to develop 
scoring models for individual items in UE-FMA, thus 
enabling the calculation of the total score. Furthermore, 
RF and ERT algorithms were implemented to develop 
Brunnstrom stage prediction models for assessing the 
functions of the arm and hand. The scoring models 
achieved an average accuracy exceeding 92.66% for indi-
vidual items. The R² value between the model-generated 
scores and those given by clinicians was 0.9838, with an 
RMSE of 2.4016. The Spearman correlation coefficients 
between the model-predicted Brunnstrom stage and 
the actual stage were 0.9475 for the arm and 0.9709 for 
the hand. These results highlight the potential of com-
bining motion sensors with deep learning to accurately 
assess upper motor functions in stroke patients, which 
could facilitate the creation of personalized rehabilita-
tion programs and promote better recovery outcomes 
for patients. In the future, we plan to expand the dataset 
to develop more granular, decimal-level evaluation mod-
els, improving precision and enhancing generalizability. 
Additionally, we aim to develop a comprehensive system 
framework that integrates data collection, assessment 
algorithms, and an evaluation platform, ensuring ease of 
use for clinicians and patients.
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