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Abstract 

Background Diabetes mellitus is a highly burdensome metabolic disorder, affecting over 100 million people 
worldwide and leading to numerous complications. Among these, diabetic neuropathy is one of the most common, 
with approximately 60% of individuals with diabetes developing this condition. Current pharmacological treatments 
for diabetic neuropathy are often inadequate, providing limited efficacy and accompanied by a range of adverse 
effects. Non‑invasive brain and nerve stimulation techniques have been proposed as potentially beneficial for diabetic 
neuropathy, though existing evidence remains inconclusive. This systematic review and network meta‑analysis 
(NMA) aimed to evaluate the comparative efficacy of various non‑invasive brain and nerve stimulation interventions 
in patients with diabetic neuropathy.

Methods A systematic search of electronic databases was conducted to identify randomized controlled trials 
(RCTs) of non‑invasive brain or nerve stimulation in patients with diabetic neuropathy, from inception to September 
6, 2024. The primary outcome was the change in pain severity, while secondary outcomes included changes 
in quality of life and sleep disturbance. Acceptability was assessed through dropout rates (i.e., withdrawal 
from the study before completion for any reason). A frequentist‑based NMA was performed, utilizing odds ratios (OR) 
and standardized mean differences (SMD) with 95% confidence intervals (95%CIs) as effect size measures.
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Results The NMA, which included 15 RCTs (totaling 1,139 participants, with a mean age of 61.2 years and a mean 
female proportion of 53.8%), evaluated 10 experimental interventions (1 control group, 4 non‑invasive brain 
stimulation methods, and 5 non‑invasive nerve stimulation methods). The analysis revealed that only transcutaneous 
electrical nerve stimulation (TENS) was associated with significantly greater improvements in pain severity (SMD 
= − 1.67, 95%CIs = − 2.64 to − 0.71) and sleep disruption (SMD = − 1.63, 95%CIs = − 2.27 to − 0.99) compared 
to the control group. None of the studied interventions showed significant differences in dropout rates or all‑cause 
mortality compared to the control group.

Conclusion This study provides comparative evidence supporting the use of specific brain and nerve stimulation 
interventions in managing diabetic neuropathy. Future well‑designed RCTs with longer treatment durations are 
recommended to further validate the long‑term efficacy of these interventions.

Trial registration PROSPERO CRD42024587660.

Keywords Network meta‑analysis, TENS, Transcutaneous electrical nerve stimulation, Non‑invasive brain stimulation, 
Non‑invasive nerve stimulation, Diabetes

Introduction
Diabetes mellitus is a highly burdensome metabolic 
disorder, affecting over 100 million individuals globally 
[1]. It is associated with a substantial mortality rate of 
18.5 per 100,000 population and a disability-adjusted 
life year (DALY) rate of 801.5 per 100,000 population, 
primarily due to its numerous complications [2]. 
Among these complications, diabetic neuropathy is one 
of the most prevalent, affecting approximately 60% of 
patients with diabetes mellitus [1]. Of those, 43% to 53% 
experience painful symptoms in their extremities [3].

Despite its high prevalence, effective treatment for 
diabetic neuropathy remains limited and challenging [4]. 
Simple symptomatic pharmacotherapy could provide 
limited efficacy in restoring damaged nerves or their 
function [1]. Further, many of these treatments are 
associated with undesirable side effects. On the other 
hand, researchers noticed that, in animal model, low 
intensity electrical stimulation could promote nerve 
regeneration after nerve injury [5].

To address this clinical challenge, researchers have 
explored the use of non-invasive brain and nerve 
stimulation techniques for managing diabetic neuropathy. 
These methods include brain stimulation, commonly 
referred to as neurostimulation or neuromodulation, 
which works by inducing an electric or magnetic field 
in targeted brain regions [6]. By adjusting stimulation 
parameters, these techniques can amplify or suppress 
neuronal activity [7]. Similarly, nerve stimulation—
administered through electrical or magnetic methods—
functions by indirectly stimulating endogenous opioids 
at the spinal cord level [8] or by improving endoneurial 
blood flow and restoring nerve conduction velocity [9].

Building on the theoretical benefits of non-invasive 
brain and nerve stimulation in improving outcomes for 
diabetic neuropathy, several new modalities have been 
developed. These include brain stimulation techniques 

such as transcranial direct current stimulation (tDCS), 
deep transcranial magnetic stimulation (dTMS), and 
repetitive transcranial magnetic stimulation (rTMS), as 
well as nerve stimulation methods like frequency-mod-
ulated electromagnetic neural stimulation (FREMS), 
pulsed electromagnetic field (PEMF), static electro-
magnetic field (SEMF), and transcutaneous electri-
cal nerve stimulation (TENS). These modalities have 
demonstrated not only promising efficacy but also an 
acceptable safety profile in terms of dropout rates and 
all-cause mortality [6].

Multiple randomized controlled trials (RCTs) have been 
conducted to assess the efficacy of these non-invasive 
brain and nerve stimulation methods for managing dia-
betic neuropathy. Some traditional pairwise meta-anal-
yses have summarized the available evidence [10, 11]; 
however, the results have been inconsistent. Furthermore, 
traditional pairwise meta-analyses are unable to provide 
detailed comparisons between the different non-invasive 
brain and nerve stimulation methods.

Given this context, a well-designed network meta-
analysis (NMA) offers the advantage of estimating com-
parative efficacy and understanding the relative merits 
of different interventions. Based on its methodological 
superiority, NMA could provide more comprehensive 
evidence to assist decision making process in either daily 
medical practice [12] or in psychological approach [13] 
than the traditional pair-wise meta-analyses did. A well-
designed NMA, when used appropriately, could help in 
health promotion [14] so that it might ultimately lead to 
improvement in overall social economics. To the best of 
our knowledge, no NMAs have been conducted to evalu-
ate the efficacy of various non-invasive brain and nerve 
stimulation techniques in patients with diabetic neu-
ropathy. Therefore, the aim of this systematic review and 
NMA is to compare the efficacy of different non-invasive 
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brain and nerve stimulation methods in the management 
of diabetic neuropathy.

Methods
This network meta-analysis (NMA) adhered to the guide-
lines outlined in the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) extension for 
network meta-analyses (PRISMA NMA) [15] (eTable  1). 
The protocol was registered with PROSPERO under the 
registration number CRD42024587660 and received 
approval from the Institutional Review Board of the Tri-
Service General Hospital, National Defense Medical 
Center, Taipei, Taiwan (IRB No. B- 109–29).

Database searches and study identification
Comprehensive searches were conducted across multiple 
databases, including PubMed, Embase, ClinicalKey, 
Cochrane CENTRAL, ProQuest, ScienceDirect, Web of 
Science, and ClinicalTrials.gov. The search for eligible 
studies began on September 6, 2024. The search term 
was (transcutaneous electrical nerve stimulator OR 
TENS OR pulsed electromagnetic field OR PEMF OR 
deep transcranial magnetic stimulation OR dTMS OR 
repetitive transcranial magnetic stimulation OR rTMS 
OR TMS OR non-invasive brain stimulation OR non-
invasive nerve stimulation OR theta burst stimulation OR 
transcranial direct current stimulation OR TBS OR tDCS 
OR vagus nerve stimulation OR vagal nerve stimulation 
OR tVNS OR nVNS OR VNS OR static magnetic field 
stimulation OR colon electric stimulation) AND (diabetic 
neuropathy OR diabetic polyneuropathy) AND (random 
OR randomized OR randomised) in the PubMed. 
However, since the search syntax and search logic varied 
across databases, we listed the detailed search term and 
search result in eTable 2. Two independent reviewers (PT 
Tseng and BY Zeng) conducted the electronic searches, 
and screened titles and abstracts. In cases of discrepancy, 
a third reviewer (CS Liang) would be consulted and 
finally achieved a resolution through consensus. 
Additionally, reference lists from review articles were 
manually screened for relevant studies [6, 16–18]. No 
language restrictions were applied to the search.

Inclusion and exclusion criteria
The NMA followed the PICOS framework (Population, 
Intervention, Comparison, Outcome, Study design) 
with the following criteria: (1) Population: human 
patients with diabetic neuropathy; (2) Intervention: non-
invasive brain or nerve stimulation; (3) Comparison: 
control group, including either standard care or sham 
control; (4) Outcome: changes in pain severity; and (5) 
Study: randomized controlled trials (RCTs). To limit 
heterogeneity, only trials investigating non-invasive brain 

or nerve stimulation interventions were included. Trials 
involving a single stimulation session were excluded, as 
these interventions are designed to be efficacious across 
an entire treatment course.

For inclusion, studies were required to: (1) recruit 
patients with diabetic neuropathy; (2) evaluate the 
efficacy of non-invasive brain or nerve stimulation 
interventions; and (3) be conducted in humans.

Exclusion criteria included: (1) non-RCTs; (2) RCTs 
without patients with diabetic neuropathy; (3) RCTs 
not comparing non-invasive brain or nerve stimulation 
interventions; (4) RCTs not reporting target outcomes; 
(5) RCTs limited to a single stimulation session; and (6) 
animal studies.

Methodological quality appraisal
To recognize the quality of included studies, two 
reviewers independently assessed the risk of bias for 
using the Cochrane Risk of Bias Tool 1.0 [19], achieving 
inter-rater reliability of 0.88. Discrepancies were resolved 
by a third reviewer.

Outcome definition
The primary outcome of this NMA was the change in 
pain severity. As different studies used various scales to 
assess pain severity, no restrictions were imposed on the 
specific pain rating scales. Secondary outcomes included 
changes in quality of life and sleep disruption. Treatment 
acceptability was measured by the dropout rate.

Data extraction, management and conversion
Two authors (PT Tseng and BY Zeng) independently 
extracted data, including demographic information, study 
design, treatment protocols, and both primary and sec-
ondary outcomes. In cases where necessary data were 
missing, corresponding authors were contacted. Data 
extraction followed the Cochrane Handbook for System-
atic Reviews of Interventions and relevant medical litera-
ture guidelines [20].

Statistical analyses
Given the presence of multiple treatment arms, a 
random-effects model was employed for the NMA 
[21], using MetaInsight (version 4.0.2, Complex 
Reviews Support Unit, National Institute for Health 
Research, London, UK) within a frequentist framework. 
MetaInsight, a web-based platform for conducting 
NMAs, incorporated the netmeta package in R software 
to perform frequentist statistical analyses [22].

Forest plots were generated for odds ratios (OR) with 
95% confidence intervals (95% CIs) for continuous 
outcomes such as dropout rates, and standardized mean 
differences (SMD) with 95%CIs for categorical outcomes, 
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including changes in pain severity, quality of life, and 
sleep disruption [23]. Treatments were then ranked, and 
effect sizes for direct and indirect comparisons were 
presented in tables. A"node splitting"method was used to 
assess consistency between direct and indirect treatment 
effect estimates, a process well-suited for NMAs with 
access to trial-level data [22, 24]. Statistical significance 
was set at a two-tailed p-value of less than 0.05.

Sensitivity analyses
To evaluate the robustness of our findings, sensitivity 
analyses were conducted by subgrouping RCTs based 
on either (1) the target regions of stimulation; or (2) the 
duration of treatment. Specifically, stimulation methods 
were divided into (1) brain-targeted (e.g., TMS, tDCS) 
and nerve-targeted (e.g., PEMF, TENS, SEMF, FREMS) 
categories; or (2) short-term (less than 1 year) versus 
long-term (at least 1 year) treatment durations.

General declaration
This study conforms to the provisions of the Declaration 
of Helsinki.

Results
Eligibility of the studies
Figure  1 presents the flowchart detailing the literature 
search and screening process for this NMA. A total of 
27 articles were excluded for various reasons (eTable 3), 
leaving 15 RCTs for inclusion (Table  1) [25–39]. These 
studies involved 1,139 participants (mean age = 61.2 
years, range: 54.5 to 70.6 years; mean female proportion 
= 53.8%, range: 39.1% to 66.3%). The average treatment 
duration was 10.3 weeks (range: 1 to 16 weeks), while 
the mean study duration, including post-treatment 
follow-up, was 11.0 weeks (range: 1 to 16 weeks). In total, 
10 experimental arms were analyzed (1 control arm, 4 
non-invasive brain stimulation interventions, and 5 non-
invasive nerve stimulation interventions).

Primary outcome: changes of pain severity
Only TENS (SMD = − 1.67, 95%CIs = − 2.64 to − 0.71) 
was associated with a significantly more reduction in 
pain severity than the control group. Among these 
interventions, TENS ranked the best intervention 
(Figs. 2, 3, and Table 2).  

Records iden�fied from:
Databases (n = 9788)

Registers (n = 2)

Records removed before screening:
Duplicate records removed  (n = 4159)
Records marked as ineligible by automa�on tools (n = 0)
Records removed for other reasons (n = 0)

Records screened
(n = 5632)

Records excluded
(n = 5590)

Reports sought for retrieval
(n = 42)

Reports not retrieved
(n = 0)

Reports assessed for eligibility
(n = 42)

Ar�cles excluded according to (n=27)
(1) Animal study
(2) Both treatment arms were the same treatment 

modali�es
(3) Commentary
(4) Duplicate sample source with other included studies
(5) End-stage renal disease but not diabetes mellitus
(6) Insufficient data
(7) Not randomized controlled trial
(8) Not related to diabe�c neuropathic pain
(9) Not related to noninvasive brain or nerve s�mula�on
(10)Not related to target outcome
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course
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Fig. 1 PRISMA2020 Flowchart of current network meta‑analysis
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Sensitivity analysis of primary outcomes by subgroup 
analysis of non‑invasive nerve or brain stimulation
The main results remained similar findings in the 
subgroup of non-invasive nerve stimulation method. 
To be specific, only TENS (SMD = − 1.68, 95%CIs = − 
2.66 to −  0.70) was associated with a significantly more 
reduction in pain severity than the control group in the 
subgroup of non-invasive nerve stimulation method 
(eFigure 1 A, eFigure 2 A, and eTable 4 A).

However, none of the investigated non-invasive brain 
stimulations were associated with a significantly different 
changes of pain severity compared to the control group 
(eFigure 1B, eFigure 2B, and eTable 4B).

Sensitivity analysis of primary outcomes by subgroup 
analysis of short‑term or long‑term treatment duration
The main results remained similar findings in the 
subgroup of short-term treatment duration. To be 
specific, only TENS (SMD = − 2.38, 95%CIs = − 4.76 

to −  0.01) was associated with a significantly more 
reduction in pain severity than the control group 
in the subgroup of short-term treatment duration 
(eFigure 1 C, eFigure 2 C, and eTable 4 C).

However, on the other hand, only FREMS (SMD = − 
0.51, 95%CIs = − 0.91 to − 0.11) was associated with a 
significantly more reduction in pain severity than the 
control group in the subgroup of long-term treatment 
duration (eFigure 1D, eFigure 2D, and eTable 4D).

Secondary outcome: changes of quality of life
Only the high frequency (10 Hz) rTMS over left motor 
cortex (C3) (HFrTMSC3) (SMD = − 2.16, 95%CIs 
= − 3.26 to − 1.06) showed a significantly greater 
improvement in quality of life compared to the control 
group did. Among these interventions, HFrTMSC3 
ranked as the most effective (eFigure 1E, eFigure 2E, and 
eTable 4E).

Fig. 2 Network structure of the primary outcome: changes of pain severity. Overall structure of the network meta‑analysis. The lines 
between nodes represent direct comparisons in various trials, and the size of each circle is proportional to the number of participants in each 
specific treatment. The thickness of the lines is proportional to the number of trials connected to the network
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Secondary outcome: sleep disruption
Only the TENS (SMD = − 1.63, 95%CIs = − 2.27 to 
−  0.99) was associated with a significantly greater 
improvement in sleep disruption compared to the control 
group did. It also ranked as the most effective among the 
interventions (eFigure 1 F, eFigure 2 F, and eTable 4 F).

Acceptability: drop‑out rate
None of the investigated treatments were associated with 
a significantly different drop-out rate compared to the 
control group (eFigure 1G, eFigure 2G, and eTable 4G).

Risk of bias and inconsistency
In terms of risk of bias, 81.9% (86/105 items) of the 
studies were classified as having a low risk of bias, 
14.3% (15/105 items) had an unclear risk, and 3.8% 
(4/105 items) were considered to have a high risk of bias 
(eFigures 3 A, B). The inconsistency test, which assessed 
the assumption of consistency across studies, revealed no 
significant inconsistencies in this NMA (eTable 5).

Discussion
To the best of our knowledge, this NMA is the first 
systematic attempt to compare the efficacy of various 
non-invasive brain and nerve stimulation therapies in 
patients with diabetic neuropathy. The key findings of 
this analysis indicate that only TENS demonstrated 
superior efficacy across the primary and secondary 

outcomes, specifically in reducing pain severity and 
improving sleep disruption. Furthermore, HFrTMSC3 
was the sole intervention associated with a significant 
improvement in quality of life compared to the control 
group. Importantly, all investigated non-invasive brain 
and nerve stimulation treatments exhibited similar 
mortality and dropout rates compared to control groups.

A significant finding of this study is that most non-
invasive brain stimulation methods (i.e., central 
stimulation techniques) did not show superior efficacy 
in patients with diabetic neuropathy. This contrasts 
with the findings of previous traditional pairwise 
meta-analyses [10], which reported beneficial effects 
from pooled central stimulation techniques (i.e., brain 
stimulation) but not from pooled peripheral stimulation 
techniques (i.e., nerve stimulation). This discrepancy may 
stem from key methodological differences. Traditional 
pairwise meta-analyses pooled various interventions into 
a single category, potentially obscuring the underlying 
heterogeneity among the interventions. As previous 
reports have shown, different non-invasive brain and 
nerve stimulation techniques exhibit variable efficacy 
across different neuropsychiatric conditions [40–44]. The 
strength of NMA lies in its ability to provide comparative 
effect sizes across multiple interventions, a level of detail 
unattainable through traditional pairwise meta-analyses.

Another important outcome of this study is the 
favorable efficacy of TENS in primary and secondary 
outcomes, particularly in short-term treatments. The 
main statistical estimates came from 5 RCTs [28–30, 
32, 34], which were all well-designed randomized 
trials. Among them, two were double-blind designed 
[28, 30], which all suggested a better improvement in 
pain severity in TENS group than sham group. The 
other three RCTs, either single-blind [29, 32] or open-
label [34], revealed similar findings. TENS, applied via 
electrodes placed on the skin over the lower extremities, 
stimulates peripheral nerves to alleviate diabetic 
neuropathy symptoms. Its advantages include ease 
of use, affordability, non-invasiveness, and minimal 
adverse effects [11]. Although the precise physiological 
mechanism behind TENS’s pain-relieving effects remains 
unclear, studies suggest that it may improve endoneurial 
blood flow and restore nerve conduction velocity [9]. 
The well-perfused peripheral nerve would be associated 
with good clinical response through the linkage of the 
increased central endogenous opioid-like substances 
[45]. The aforementioned central endogenous opioid-
like substances could indirectly inhibit the transmission 
of painful stimulus C fibers [46]. While the duration of 
TENS therapy varied across the included RCTs, previous 
studies have demonstrated that its beneficial effects on 
diabetic neuropathy can persist for an average of 1.7 

Fig. 3 Forest plot of primary outcome: changes of pain severity. 
When the effect size (expressed as standardized mean differences) 
was less than zero, the specified treatment was associated 
with greater improvement in pain severity in patients with diabetic 
neuropathy than in patients in control groups. 95%CIs: 95% 
confidence intervals; DLPFCtDCS: anodal over F3 and cathodal 
over Fp2; drTMS: deep rTMS over bilateral parietal lobe; FREMS: 
frequency‑modulated electromagnetic neural stimulation; hfEMS: 
high‑frequency external muscle stimulation; HFrTMSC3: high 
frequency rTMS over C3; M1 tDCS: anodal over C3 and cathodal 
over Fp2; NA: not available; NMA: network meta‑analysis; OR: 
odds ratio; PEMF: pulsed electromagnetic fields; RCT: randomized 
controlled trial; rTMS: repetitive transcranial magnetic stimulation; 
SEMF: static electromagnetic field; SMD: standardized mean 
difference; tDCS: transcranial direct current stimulation; TENS: 
transcutaneous electrical nerve stimulation
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years [47], suggesting long-term efficacy. In terms of 
acceptability, TENS was well-tolerated, with minimal 
adverse effects and a dropout rate comparable to control 
groups in this NMA [11].

On the other hand, while FREMS showed a significant 
reduction in pain severity in the long-term treatment 
subgroup, this finding should be interpreted cautiously, 
as it was based on a single RCT [25]. The reliability of 
the FREMS in long-term treatment duration should 
be reappraisal by the future RCTs with long treatment 
duration.

Strengths and limitations
This NMA has several strengths. First, it provides 
comprehensive comparative evidence on the efficacy 
and acceptability of different brain and nerve stimulation 
interventions for diabetic neuropathy, which traditional 
pairwise meta-analyses could not achieve. Second, we 
enhanced the reliability of our findings by including 
only RCTs, avoiding potential biases from non-RCTs 
and case–control studies. Third, we offered clinicians a 
broader understanding by analyzing various outcomes, 

including changes in pain severity, quality of life, sleep 
disruption, and acceptability (i.e., dropout rate).

However, this NMA also has limitations. First, some 
analyses may be underpowered due to heterogeneity in 
experimental arms, such as differences in stimulation 
target regions (i.e., brain vs. nerve stimulation). To 
mitigate this, we conducted subgroup analyses based 
on stimulation target regions. Second, our strict 
inclusion criteria excluded non-RCTs, resulting in 
some treatment comparisons being based on a single 
RCT, such as the improvement in quality of life in 
the HFrTMSC3 group compared to the sham group. 
Despite the positive outcomes, caution is warranted in 
interpreting these results. Lastly, the varied treatment 
durations across the included trials could introduce 
hidden heterogeneity. To address this, we performed 
subgroup analyses based on treatment duration. 
Although FREMS was associated with significant pain 
reduction, this result should be interpreted cautiously 
due to the inclusion of only one RCT in the long-term 
treatment subgroup [25]. Future RCTs with longer 
treatment durations (i.e., at least 1 year) are needed to 
confirm these findings.

Table 2 League table of the primary outcome: changes of pain severity

Data present as SMD [95%CIs]. Pairwise (upper-right portion) and network (lower-left portion) meta-analysis results are presented as estimate effect sizes for the 
outcome of changes of pain severity in patients with diabetic neuropathy. Interventions are reported in order of mean ranking of beneficial effect on improvement 
of pain severity, and outcomes are expressed as standardized mean difference (SMD) (95% confidence intervals) (95%CIs). For the pairwise meta-analyses, SMD of 
less than 0 indicate that the treatment specified in the row got more beneficial effect than that specified in the column. For the network meta-analysis (NMA), SMD of 
less than 0 indicate that the treatment specified in the column got more beneficial effect than that specified in the row. Bold results marked with * indicate statistical 
significance

95%CIs: 95% confidence intervals; DLPFCtDCS: anodal over F3 and cathodal over Fp2; drTMS: deep rTMS over bilateral parietal lobe; FREMS: frequency-modulated 
electromagnetic neural stimulation; hfEMS: high-frequency external muscle stimulation; HFrTMSC3: high frequency rTMS over C3; M1 tDCS: anodal over C3 and 
cathodal over Fp2; NA: not available; NMA: network meta-analysis; OR: odds ratio; PEMF: pulsed electromagnetic fields; RCT: randomized controlled trial; rTMS: 
repetitive transcranial magnetic stimulation; SEMF: static electromagnetic field; SMD: standardized mean difference; tDCS: transcranial direct current stimulation; 
TENS: transcutaneous electrical nerve stimulation

TENS 0.22 [− 1.59; 
2.04]

*− 1.67 [− 
2.64; − 0.71]

0.22 [− 1.59; 
2.04]

hfEMS

− 0.63 [− 
2.28; 1.01]

− 0.85 [− 
3.30; 1.60]

M1 tDCS − 1.01 [− 
2.84; 0.81]

− 1.04 [− 2.37; 
0.29]

− 0.73 [− 
2.31; 0.86]

− 0.95 [− 
3.36; 1.46]

− 0.10 [− 
1.92; 1.73]

FREMS − 0.95 [− 2.20; 
0.31]

− 0.97 [− 
3.11; 1.16]

− 1.19 [− 
4.00; 1.61]

− 0.34 [− 
2.66; 1.98]

− 0.24 [− 
2.52; 2.04]

drTMS − 0.70 [− 2.61; 
1.20]

− 0.99 [− 
3.15; 1.17]

− 1.21 [− 
4.03; 1.61]

− 0.36 [− 
2.70; 1.98]

− 0.26 [− 
2.57; 2.04]

− 0.02 [− 
2.73; 2.69]

HFrTMSC3 − 0.68 [− 2.62; 
1.25]

− 1.39 [− 
3.35; 0.58]

− 1.61 [− 
4.28; 1.07]

− 0.75 [− 
2.46; 0.96]

− 0.66 [− 
2.78; 1.46]

− 0.41 [− 
2.97; 2.14]

− 0.39 [− 
2.97; 2.18]

DLPFCtDCS − 0.55 [− 2.37; 
1.27]

− 1.58 [− 
3.56; 0.40]

− 1.80 [− 
4.49; 0.88]

− 0.95 [− 
3.13; 1.23]

− 0.85 [− 
2.99; 1.28]

− 0.61 [− 
3.18; 1.96]

− 0.59 [− 
3.18; 2.00]

− 0.19 [− 
2.62; 2.23]

SEMF − 0.10 [− 1.82; 
1.63]

*− 1.69 [− 
3.09; − 0.29]

− 1.91 [− 
4.20; 0.38]

− 1.06 [− 
2.73; 0.61]

− 0.96 [− 
2.57; 0.65]

− 0.72 [− 
2.87; 1.44]

− 0.70 [− 
2.88; 1.48]

− 0.30 [− 
2.29; 1.68]

− 0.11 [− 
2.11; 1.89]

PEMF 0.02 [− 0.99; 
1.02]

*− 1.67 [− 
2.64; − 0.71]

− 1.90 [− 
3.95; 0.16]

− 1.04 [− 
2.37; 0.29]

− 0.95 [− 
2.20; 0.31]

− 0.70 [− 
2.61; 1.20]

− 0.68 [− 
2.62; 1.25]

− 0.29 [− 
2.00; 1.42]

− 0.10 [− 
1.82; 1.63]

0.02 [− 0.99; 
1.02]

Control
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Conclusion
This NMA revealed that TENS was the only intervention 
to demonstrate superior efficacy in both the primary 
outcome (i.e., reduction in pain severity) and secondary 
outcomes (i.e., improvement in sleep disruption). 
Furthermore, all investigated non-invasive brain and 
nerve stimulation treatments showed comparable 
mortality and dropout rates to those of the control 
groups. This study provides valuable comparative 
evidence supporting the use of various brain and 
nerve stimulation techniques in the management of 
diabetic neuropathy. We believed the main findings of 
the current NMA could help in relieving discomfort 
related to diabetic neuropathy so that the overall social 
economic status would be improved through the 
ameliorating disease burden. Future well-designed RCTs 
with extended treatment durations are recommended 
to further substantiate the long-term efficacy of these 
interventions.
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