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Abstract
Background  Transcranial alternating current stimulation (tACS) is a non-invasive technique that modulates neural 
oscillations, yet its specific effects on cortical excitability are not well-understood. This study investigated the effects of 
tACS on neuroplasticity in the primary motor cortex (M1) across different frequencies.

Methods  In this randomized, sham-controlled, crossover study, 18 healthy young adults received β-tACS γ-tACS, and 
sham stimulation over the M1. Neurophysiological responses were assessed using motor evoked potentials (MEPs), 
electroencephalograms (EEG), and transcranial evoked potentials (TEPs) to determine the frequency-specific effects of 
tACS on cortical excitability and neuroplasticity.

Results  γ-tACS significantly enhanced cortical excitability, as reflected by larger MEP amplitudes compared to both 
β-tACS and sham stimulation. In addition, γ-tACS resulted in significantly smaller M1-P15 amplitudes in TEP than other 
stimulation conditions. In contrast, β-tACS did not produce significant changes in either MEPs or TEPs compared to 
sham stimulation.

Conclusion  These findings provide evidence that tACS induces frequency-dependent effects on cortical excitability 
and neuroplasticity within the M1. This selective modulation of cortical excitability with γ-tACS suggests its potential 
as a therapeutic intervention for optimizing motor function and rehabilitation.

Trial registration  This study was registered in the Chinese Clinical Trial Registry (ChiCTR2300074898, date of 
registration: 2023/08/18).

Keywords  Transcranial alternating current stimulation, Primary motor cortex, Moter evoked potentials, TMS evoked 
potentials, Neural modulation.
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Background
Stroke is a leading cause of death and long-term dis-
ability worldwide, imposing significant economic and 
social burdens due to the extensive costs of treatment 
and rehabilitation [1]. Post-stroke survivors often expe-
rience persistent motor dysfunction, severely impairing 
their quality of life [2]. In recent years, non-invasive brain 
stimulation (NIBS) techniques have emerged as prom-
ising interventions for post-stroke motor impairments 
due to their non-invasive nature, ease of application, and 
potential for standardized clinical protocols [3]. Among 
the various NIBS techniques, transcranial magnetic stim-
ulation (TMS) [4], transcranial direct current stimulation 
(tDCS) [5], and transcranial alternating current stimula-
tion (tACS) [6] have been the focus of extensive research. 
In particular, tACS has gained attention as a promising 
method for modulating neural activity in a frequency-
specific manner [7]. Unlike tDCS, which modulates neu-
ronal excitability by inducing membrane depolarization 
or hyperpolarization through direct currents [8], tACS 
operates by using alternating, biphasic currents that 
change polarity at specific frequencies [9]. This approach 
enables tACS to interact with endogenous neural oscil-
lations, influencing brain activity without directly alter-
ing membrane potential [10]. Such frequency-specific 
modulation of neural oscillations positions tACS as a ver-
satile tool for modulating brain circuits involved in vari-
ous cognitive [11] and motor functions [12]. However, 
the therapeutic potential of tACS in motor rehabilitation 
remains uncertain, particularly regarding how different 
stimulation frequencies modulate motor cortical activity.

Previous research has shown the frequency-dependent 
effects of tACS on neural function [13]. For instance, 
Bologna et al. [14] found that β-tACS impaired motor 
learning acquisition, while γ-tACS enhanced perfor-
mance during motor training. These findings, along with 
other studies [15–18], emphasize the important role 
of stimulation frequency in shaping the effects of tACS 
on motor learning and cortical excitability. Specifically, 
while γ-tACS appears to facilitate movement, β-tACS is 
generally associated with motor inhibition [19–22]. How-
ever, inconsistencies across studies [15, 23–24] have been 
observed, highlighting the need for further investigation 
into the specific effects of tACS on motor function and 
its potential therapeutic applications. In particular, deter-
mining the optimal stimulation frequency for promoting 
motor recovery remains an open question.

To this end, this study investigated the effects of tACS 
on cortical excitability and neuroplasticity across differ-
ent frequency bands in healthy participants. By com-
paring the effects of β-, γ-, and sham-tACS conditions, 
we sought to elucidate the neurophysiological mecha-
nisms underlying frequency-dependent modulation of 
cortical activity. By employing a comprehensive set of 

neurophysiological measures that included motor evoked 
potentials (MEPs), electroencephalography (EEG), and 
transcranial evoked potentials (TEPs), this study aimed 
to provide new insights into the optimal tACS parame-
ters in modulating M1 neuroplasticity, ultimately inform-
ing its potential for post-stroke motor rehabilitation.

Methods
Participants
A total of 18 healthy, right-handed adults (6 males and 12 
females, aged 23.33 ± 1.80 years) were recruited for this 
study. Participants were excluded if they had: (1) a his-
tory of neurological or psychiatric disorders, (2) drug or 
alcohol addiction, (3) severe cardiopulmonary illness, 
(4) cognitive impairment, (5) inadequate sleep the night 
before the experiment, (6) recent consumption of neuro-
excitatory substances or medications, and (7) contrain-
dications to tACS, such as epilepsy or intracranial metal 
implants. All participants provided written informed 
consent prior to their participation in the study. No par-
ticipants withdrew from the study. Ethical approval was 
obtained from the Ethics Committee of the Third Affili-
ated Hospital of Sun Yat-Sen University (PJ2020MI-
K180-01). This study is part of the registered research 
project (ChiCTR2300074898), which aims to investigate 
the effects and mechanisms of tACS in both healthy indi-
viduals and clinical populations. As an initial step, the 
present manuscript reported findings from the healthy 
cohort.

Measurement of electrophysiological indicators
Motor evoked potentials (MEPs)
Corticospinal excitability was assessed using a TMS 
device (YIRUIDE, YRD CCY-I, Wuhan, China). Partici-
pants were seated comfortably while the TMS coil was 
positioned over the left M1. The motor hotspot was iden-
tified as the scalp location that produced the largest MEP 
in the first dorsal interosseous (FDI) muscle, recorded 
by surface electromyography (EMG). The resting motor 
threshold (RMT) was defined as the minimum stimula-
tion intensity required to evoke MEPs with a peak-to-
peak amplitude greater than 50 µV in at least 5 out of 10 
trials. TMS was then delivered at 120% of the RMT for 
ten trials, and both the amplitude and latency of MEPs 
were measured for analysis.

Resting-state electroencephalogram (RS-EEG)
RS-EEG was recorded using a 64-channel, TMS-compat-
ible EEG cap (EGI, MicroCelGeodesic Sensor Net, USA) 
in accordance with the International 10–20 EEG System. 
Participants were asked to close their eyes while listen-
ing to while noise through headphones. EEG signals were 
recorded at a sampling rate of 1,000 Hz, with impedance 
levels maintained below 5 KΩ by applying GT10 medical 
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conductive paste (GREENTEK). Recordings were made 
over two minutes in a resting-state condition.

TMS evoked potentials (TEP)
TEPs were recorded to assess cortical plasticity by com-
bining TMS with EEG. The same 64-channel EEG setup 
was used as in RS-EEG recordings. Single-pulse TMS 
was applied to the identified motor hotspot at 120% of 
the RMT, with an inter-stimulus interval of 2  s. A total 
of 200 TMS pulses were delivered, with EEG signals 
recorded concurrently during TMS application at a sam-
pling rate of 1,000 Hz.

Transcranial alternating current stimulation (tACS)
tACS was administered using a VOLCAN device (VC-
8000 F, Nanjing, China) with a 4 × 1 high-definition (HD) 
electrode montage. The central electrode was placed over 
the motor hotspot, with four return electrodes positioned 
around it. A biphasic alternating current waveform was 
used, with impedance kept below 1 KΩ and a current 
intensity of 2 mA applied for 20 min. Prior to each ses-
sion, the stimulation intensity was increased gradually 
from 1 mA to 2 mA to ensure participant comfort. Sham 
stimulation consisted of a 15-second ramp-up period and 

a ramp-down period, with 30 s of electrical stimulation in 
between to mimic the tACS experience.

Experimental procedures
This study was performed in a randomized, sham-con-
trolled, crossover design. Each participant underwent 
three experimental sessions in a randomized order: 
β-tACS (20 Hz), γ-tACS (70 Hz), and sham-tACS (20/70 
Hz), with a washout period of one week (no deviations) 
between sessions to minimize carryover effects (Fig.  1). 
Randomization sequences were concealed in sealed 
opaque envelopes, and investigators involved in data col-
lection and analysis were blinded to group assignments. 
The blinding was successfully implemented during the 
experimental process, and relevant data can be found in 
the supplementary materials. During each session, par-
ticipants were seated comfortably with their head and 
arms supported, and MEPs were recorded at baseline to 
assess corticospinal excitability. Subsequently, tACS was 
applied to the identified motor hotspot for 20 min. Fol-
lowing stimulation, RS-EEG and TEPs were recorded, 
and MEP threshold, amplitude, and latency were reas-
sessed to determine post-stimulation changes.

Fig. 1  Schematic representation of the study procedure. Prior to each session, MEPs were assessed to establish baseline values and determine the motor 
spot. Participants were then randomly assigned to one of three stimulation conditions: γ-tACS, β-tACS, or sham-tACS, applied over the primary motor 
cortex (M1). Following each stimulation session, electrophysiological measures were reassessed. The entire process was repeated after a washout period 
of at least one week to minimize carryover effects. MEPs: motor evoked potentials. tACS: transcranial alternating current stimulation; blue: β-tACS over the 
left M1, green: γ-tACS over the left M1, orange: sham
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Calculations
Data analysis was performed using MATLAB (R2022a, 
MathWorks, USA) with the EEGLAB and TESA tool-
boxes for EEG- and TMS-related analyses, respectively.

MEP preprocessing
MEP data underwent an initial visual inspection to 
exclude trials contaminated by EMG noise. MEP ampli-
tudes at 120% RMT were averaged for each tACS condi-
tion (pre- and post-stimulation). The modulatory effect 
of tACS was quantified as the ratio of post- to pre-stimu-
lation MEP amplitudes for each session.

Rs-EEG preprocessing
RS-EEG data were processed using the EEGLAB tool-
box in MATLAB. Data filtering included a bandpass fil-
ter (0.1–80 Hz) and a notch filter (49–51 Hz) to eliminate 
power line noise. EEG signals were re-referenced to the 
bilateral mastoid electrodes, and epochs were defined 
from − 1000 to 1000 ms relative to each event. Baseline 
correction was applied using the 500 ms window before 
event onset. Channels with artifacts were identified visu-
ally and interpolated. Independent component analysis 
(ICA) was employed to remove artifacts from eye move-
ments. Wavelet transform analyses were applied to the 
C3 electrode and its four surrounding channels, followed 
by statistical comparisons across conditions.

TEP preprocessing
The TESA toolbox was used for TEP data processing. 
EEG signals were segmented into epochs from − 200 to 
500 ms relative to TMS pulses. Artifacts within − 10 to 10 
ms of the TMS pulse were interpolated, and FastICA was 
utilized to remove muscle and electrical artifacts induced 
by TMS. A band-pass filter (1–100 Hz) and a band-stop 
filter (49–51  Hz) were then applied, followed by a sec-
ond round of ICA to eliminate remaining artifacts. The 
data were re-referenced to the bilateral mastoid, and 

the amplitudes and latencies of TEP components were 
extracted from the C3 electrode and its surrounding 
channels for statistical analysis.

Statistical analyses
Statistical analyses were performed using SPSS soft-
ware (v. 25.0, IBM Corp., Armonk, NY). Normality was 
assessed using Shapiro-Wilk test, and homogeneity of 
variance was examined with Levene’s test. Quantitative 
data were expressed as mean ± standard deviation (x̄ ± s). 
A univariate general linear model was used for analysis 
of variance (ANOVA) in this crossover design, and post-
hoc comparisons were performed with Least Significant 
Difference (LSD) correction. When the assumption of 
homogeneity of variance was violated, Welch’s ANOVA 
was applied and post hoc comparisons were conducted 
using the Games-Howell test. An alpha level of p < 0.05 
was considered statistically significant. Graphical repre-
sentations of the data were generated using OriginPro 
(Version 2024b, OriginLab Corporation, Northampton, 
MA, USA).

Results
γ-tACS modulates corticospinal excitability
The effects of tACS on corticospinal excitability were 
evaluated by analyzing the pre- and post-stimulation 
ratios of RMT and 120% MEP amplitudes and latencies 
across different stimulation conditions. Baselines vari-
able (pre-stimulation) stability is confirmed as detailed 
in the supplementary materials. To ensure normality, 
the pre-post ratio of the MEP amplitude data was log-
trasnformed (i.e. ln (MEP Amppost/MEP Amppre)) before 
statistical analyses. As shown in Fig.  2C, there were no 
significant changes in the RMT ratios across tACS con-
ditions (F(2, 51) = 0.496, p = 0.612, η² = 0.019), indicating 
that tACS did not alter baseline excitability threshold. 
However, there was a significant main effect of tACS 
condition on the ratios of 120% MEP amplitude (Welch’s 

Fig. 2  Modulation of motor cortex excitability by tACS. (A) Alteration of Ln (120% MEP amplitude post/pre ration) under the three stimulation conditions. 
γ-tACS significantly increased 120% MEP amplitude compared to sham-tACS, while β-tACS did not show a significant effect; (B) Post/pre modulation 
of 120% MEP latency across the three conditions. γ-tACS significantly reduced 120% MEP latency compared to sham-tACS, with no significant effect 
observed for β-tACS; (C) Comparison of post/pre ratios of MEP RMT across γ-tACS, β-tACS, and sham-tACS conditions, showing no significant differences 
between the conditions. (*P < 0.05; ***P < 0.001)
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F(2, 25.468) = 14.790, p < 0.001, η²=0.268), where γ-tACS 
led to increased MEP amplitudes than sham-tACS 
(p < 0.001) (Fig.  2A). In addition, there was a significant 
main effect of tACS condition on the ratios of 120% MEP 
latency (F(2, 51) = 3.314, p = 0.044, η² = 0.115), indicating 
that γ-tACS resulted in shorter MEP latencies than both 
sham-tACS (p = 0.049) and β-tACS (p = 0.020) (Fig.  2B). 
We also analyzed the potential influence of gender on the 
experimental effects. The results indicated that gender 
did not significantly modulate the effects of stimulation 
on most neurophysiological measures, as detailed in the 
supplementary materials.

γ-tACS modualtes M1-µ rhythm
To examine the effect of tACS on neural oscillations, 
we performed spectral analyses of RS-EEG data. A sig-
nificant main effect of tACS condition was observed in 
the alpha band (Welch’s F(2, 27.854) = 4.877, P = 0.015, 
η² = 0.162). As shown in Fig.  3A, γ -tACS led to a sig-
nificant increase in alpha power compared to sham-tACS 
(p = 0.017). In contrast, β-tACS did not induce a signifi-
cant change in alpha power. EEG topographical maps 
further show an increase in alpha oscillation localized 
to the sensorimotor cortex following both β-tACS and 
γ-tACS conditions compared to sham-tACS (Fig. 3B).

γ-tACS modulates M1-P15 TEP
Analyses of TEPs revealed significant differences in 
the M1-P15 amplitudes across different tACS condi-
tions (F(2, 33) = 4.069, p = 0.026, η²=0.198) (Fig.  4A and 
C). As shown in Fig.  4D, the M1-P15 amplitudes fol-
lowing γ-tACS were significantly reduced compared to 
sham-tACS (p = 0.010). Similarly, β-tACS also led to sig-
nificantly smaller M1-P15 amplitudes than sham-tACS 
(p = 0.047). However, the differences between β-tACS and 
γ-tACS were not statistically significant (p = 0.506).

Discussion
This study investigated the frequency-dependent effects 
of tACS on corticospinal excitability and cortical activ-
ity in M1. The results showed that γ-tACS led to a sig-
nificant increase in MEP amplitudes and a reduction in 
MEP latencies. Moreover, γ-tACS significantly increased 
alpha power in the sensorimotor cortex. In addition, we 
observed a significant decrease in M1-P15 TEP ampli-
tudes following γ-tACS and β-tACS. These results pro-
vide evidence for the frequency-specific interactions 
between tACS and cortical activity, suggesting that 
γ-tACS, in particular, may effectively modulate corti-
cal excitability and oscillatory patterns within the motor 
system.

tACS modulates corticospinal excitability
Our results found that γ-tACS over M1 significantly 
increased MEP amplitudes and reduced MEP latencies 
compared to sham-tACS. These results are in line with 
those reported by Naro et al. [25] that showed similarly 
increased MEP amplitudes following γ-tACS over the 
cerebellum, suggesting enhanced excitability in both the 
cerebellar-cortical pathway and the corticospinal tract. 
Similarly, Zhang et al. [26] reported increased pharyngeal 
MEP amplitude after γ-tACS over the motor cortex, fur-
ther supporting the frequency-specific effects of tACS on 
corticospinal pathways. However, some previous studies 
reported no significant changes in corticospinal excit-
ability following γ-tACS [27–28]. A potential explanation 
for these discrepancies lies in differences in stimulation 
intensity. Our study employed a higher current intensity 
(2 mA), whereas Feurra et al. [27] and Nowak et al. [28] 
used lower current intensities (less than 1.3  mA). This 
aligns with findings from a meta-analysis [29] suggest-
ing that tACS below 1 mA often fails to elicit significant 
changes in MEP amplitude. Additionally, variations in 
electrode montage (e.g. high-definition configurations) 

Fig. 3  Changes in resting-state electroencephalogram following tACS over M1. (A) Comparison of alpha band power in C3 channel and four surrounding 
channels across different conditions. γ-tACS significantly increased the alpha band power compared to sham-tACS, whereas β-tACS showed no signifi-
cant effect; (B) Topographical maps of alpha oscillations under each stimulation condition, showing the spatial distribution of alpha band power across 
the scalp. (*P<0.05)
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may enhance the focality and efficacy of tACS [30–32]. 
These findings underscore the importance of optimizing 
stimulation parameters to maximize the efficacy of tACS, 
as noted by Johnson et al. [33] in non-human primate 
studies.

The observed effects of γ-tACS on corticospinal excit-
ability may be related to spike-timing dependent plastic-
ity (STDP) [34], a process in which the precise timing of 
pre- and post-synaptic potentials determines synaptic 
strengthening or weakening. When pre-synaptic spikes 
precede post-synaptic activity, long-term potentiation 
(LTP) is induced, whereas the opposite timing leads to 
long-term depression (LTD) [35–36]. In this context, 
γ-tACS may enhance LTP-like plasticity by aligning oscil-
latory brain activity with the optimal timing for synap-
tic strengthening. Further supportive evidence comes 
from Guerra et al. [37–38], who found that γ-tACS but 
not β-tACS enhanced and prolonged LTP-like plasticity 
induced by intermittent theta burst stimulation (iTBS) 
over M1 [39] and reversed LTD-like plasticity induced 
by cTBS [40]. These findings may be attributed to the 
distinct roles of beta and gamma oscillations in motor 

control, with beta oscillations predominantly associated 
with motor inhibition [39–40] and gamma oscillations 
involved in movement preparation and execution [39, 
41–43].

GABAergic interneurons play a critical role in regu-
lating cortical excitability and plasticity, particularly 
in the context of STDP [44]. The interaction between 
γ-tACS and gamma-resonant GABAergic interneurons 
in M1 may contribute to the observed increases in cor-
tical excitability and neuroplasticity [37–38]. However, 
to date, only one cross-sectional study examined the 
potential relationship between GABAergic activity and 
tACS, showing that alpha-frequency tACS did not sig-
nificantly alter corticospinal excitability or GABAergic 
activity, as measured by MEPs and short-interval intra-
cortical inhibition (SICI) [45]. Notably, this study was 
limited to alpha-frequency tACS, leaving the effects of 
tACS with other frequency bands on GABAergic activity 
unexplored.

In the present study, we extended this line of research 
by examining the effects of β- and γ-tACS on GABAergic 
activity using TEPs. TEPs reflects the balance between 

Fig. 4  Cortical reactivity to single-pulse TMS. (A)∼(C) Butterfly plot of TEPs across all EEG channels (blue lines, 64 channels), X indicated the latency of the 
TEP component, and Y indicates the amplitude of the TEP component; (D) Comparison of the M1-P15 amplitudes across different stimulation conditions. 
Both β-tACS and γ-tACS significantly reduced the amplitude of the M1-P15 component compared to sham-tACS. (*P<0.05, **P<0.01). TEP: TMS evoked 
potential
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cortical excitation and inhibition and have been linked 
to GABAergic interneuron function [46]. Alterations in 
TEPs have been observed in patients with neurodegener-
ative diseases such as amyotrophic lateral sclerosis (ALS), 
where GABAergic dysfunction is a hallmark feature [47]. 
Our findings found both β- and γ-tACS led to a reduc-
tion in M1-P15 TEP amplitudes, suggesting that these 
frequencies may modulate GABAergic activity. This sup-
ports the notion that β- and γ-tACS can regulate cortical 
excitability and plasticity through their effects on GAB-
Aergic interneurons.

Alternation in resting-state EEG
To further investigate the effects of tACS on neural 
oscillations, we analyzed RS-EEG following stimula-
tion. While no significant changes were observed in beta 
or gamma oscillations, we found a significant increase 
in alpha power localized in the S1, particularly in the 
γ-tACS condition. These alpha oscillations, often referred 
to as mu rhythms, are closely linked to sensorimotor 
processing and cortical excitability [48], suggesting that 
γ-tACS may exert broader modulatory influences beyond 
M1.

Our findings are consistent with those of Gundlach et 
al. [49–50], who found that tACS can modulate somato-
sensory mu-rhythms and reduce functional connectivity 
in S1. This suggests that γ-tACS influences the senso-
rimotor loop, where sensory inputs from S1 shape motor 
output via M1. Functional MRI studies have extensively 
documented the critical role of sensory feedback in mod-
ulating motor activity [51–53], suggesting that γ-tACS 
may enhance motor function indirectly through sensory 
modulation. The observed increase in alpha power in 
S1 may reflect a shift in cortical excitability, potentially 
affecting downstream motor function [54–57]. Although 
our study did not establish a direct causal link between 
alpha modulation and motor excitability, previous stud-
ies by Thies et al. [58], Bergmann [59], and Zrenner [60] 
have reported a positive correlation between enhanced 
mu-alpha power and increased MEP amplitude. These 
findings suggest γ-tACS may facilitate motor corti-
cal plasticity by enhancing sensorimotor interactions, a 
mechanism that warrants further exploration.

Alternations in TEP
TMS-EEG provides a direct measure of cortical excitabil-
ity, offering valuable insights into the effects of γ-tACS 
on motor cortical function. In our study, γ-tACS led to 
a significant decrease in the M1-P15 TEP amplitudes, 
suggesting a modulation of transcallosal inhibition [61]. 
This finding is consistent with findings from Zazio et al. 
[62] that showed a positive correlation between M1-P15 
amplitudes and the ipsilateral silent period (iSP), indicat-
ing that the P15 component reflects inhibitory processes 

across the corpus callosum. The attenuation of the 
M1-P15 amplitude following γ-tACS suggests that this 
stimulation protocol may reduce transcallosal inhibition 
from the unaffected hemisphere, potentially facilitating 
motor recovery by restoring interhemispheric balance. 
This mechanism is consistent with neuromodulation 
strategies aimed at promoting post-stroke motor recov-
ery by rebalancing interhemispheric excitability. Previous 
TMS studies have demonstrated that reducing transcal-
losal inhibition can enhance motor function in stroke 
patients, particularly when targeting interhemispheric 
asymmetry [63]. Our findings thus contribute to this 
growing body of evidence, suggesting that γ-tACS may 
hold therapeutic potential for stroke rehabilitation by 
modulating interhemispheric dynamics.

Clinical potential of tACS
Our study found that γ-tACS had a more pronounced 
modulatory effect on motor cortical excitability than 
β-tACS, suggesting that its potential clinical relevance 
for post- stroke motor rehabilitation. Neuromodulation 
techniques such as TMS [63] and tDCS [64] have been 
extensively studied in stroke rehabilitation, primar-
ily targeting interhemispheric coordination to restore 
excitability balance between the affected and unaffected 
hemispheres. In contrast, tACS offers a distinct advan-
tage by modulating neural oscillations and synchronizing 
brain activity at functionally relevant frequencies [65]. 
This frequency-specific modulation may provide a more 
physiologically relevant approach to enhancing motor 
plasticity. To date, research on tACS for post-stroke reha-
bilitation has primarily reported benefits in gait func-
tion [66], aphasia [67], and spatial attention deficits [68]. 
Compared to TMS and tDCS, tACS has unique advan-
tages, including lower seizure risk [69], higher cost-effec-
tiveness, and reduced discomfort [70]. Therefore, further 
studies are necessary to directly compare the therapeutic 
efficacy of tACS, TMS, and tDCS, particularly regarding 
their effects on STDP and GABAergic neuronal activity 
[71–73].

Limitations
There are several limitations of this study that should 
be acknowledged. First, our study specifically focused 
on immediate effects of tACS on cortical excitability 
and neuroplasticity. Given that such transient neuro-
physiological changes are typically not robust enough to 
induce measurable behavioral effects, we did not include 
a motor task assessment. Future studies should incor-
porate multi-session tACS protocols and motor task 
assessments to link tACS-induced neuroplasticity to 
functional improvements. Secondly, We collected only 10 
MEP trials per condition, and during the experiment, we 
included the visual exclusion of trials contaminated by 
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EMG noise. Due to technical limitations, we are unable 
to provide the specific percentage of trials excluded. This 
may impact the reliability of motor cortical excitability 
assessments. Increasing the number of trials and imple-
menting methods to record excluded trials in future stud-
ies would enhance measurement stability and improve 
the robustness of findings. Finally, while EEG provides 
valuable insights into neural oscillatory dynamics, its 
limited spatial resolution remains challenges. Integrating 
EEG with functional imaging techniques could provide a 
more comprehensive understanding of the neural mecha-
nisms underlying tACS effects.

Conclusions
In summary, this study found that γ-tACS over the M1 
enhanced corticospinal excitability and modulated sen-
sorimotor activity, suggesting its potential to influence 
both motor and sensory networks for sensorimotor inte-
gration. Additionally, the reduction in the M1-P15 TEP 
amplitudes suggest a potential role of γ-tACS in modulat-
ing interhemispheric inhibition, which may contribute to 
rebalancing cortical excitability in motor networks. These 
results underscore the therapeutic potential of γ-tACS as 
a non-invasive tool for enhancing neuroplasticity, partic-
ularly in the context of post-stroke motor rehabilitation.
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