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Abstract 

Robotic technology is expected to transform rehabilitation settings, by providing precise, repetitive, and task-specific 
interventions, thereby potentially improving patients’ clinical outcomes. Artificial intelligence (AI) and machine learn-
ing (ML) have been widely applied in different areas to support robotic rehabilitation, from controlling robot move-
ments to real-time patient assessment. To provide an overview of the current landscape and the impact of AI/ML 
use in robotics rehabilitation, we performed a systematic review focusing on the use of AI and robotics in rehabilita-
tion from a broad perspective, encompassing different pathologies and body districts, and considering both motor 
and neurocognitive rehabilitation. We searched the Scopus and IEEE Xplore databases, focusing on the studies involv-
ing human participants. After article retrieval, a tagging phase was carried out to devise a comprehensive and easily-
interpretable taxonomy: its categories include the aim of the AI/ML within the rehabilitation system, the type of algo-
rithms used, and the location of robots and sensors. The 201 selected articles span multiple domains and diverse aims, 
such as movement classification, trajectory prediction, and patient evaluation, demonstrating the potential of ML 
to revolutionize personalized therapy and improve patient engagement. ML is reported as highly effective in predict-
ing movement intentions, assessing clinical outcomes, and detecting compensatory movements, providing insights 
into the future of personalized rehabilitation interventions. Our analysis also reveals pitfalls in the current use of AI/
ML in this area, such as potential explainability issues and poor generalization ability when these systems are applied 
in real-world settings.

Keywords Artificial intelligence, Deep learning, Patient assessment, Physical therapy, Cognitive, Gait, Movement, 
Trauma, Stroke, Sensor

Background
Rehabilitation refers to a multidisciplinary approach 
aimed at restoring, improving, or maintaining an individ-
ual’s physical, cognitive, emotional, and social function-
ing following illness, injury, or disability [1]. The origins 
of rehabilitation sciences trace back to the early twenti-
eth century. Over the decades, the scope of rehabilita-
tion has broadened significantly, encompassing various 
disciplines to cater to the diverse needs of individuals. 
This evolution reflects a paradigm shift from a predomi-
nantly medical model of rehabilitation to a more holistic, 
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patient-centered approach that considers the physical, 
psychological, and social dimensions of recovery. Tradi-
tionally, rehabilitation has been classified into two main 
categories: motor and cognitive rehabilitation. Motor 
rehabilitation primarily focuses on restoring physical 
functioning and mobility, while cognitive rehabilitation 
targets cognitive processes such as memory, attention, 
and executive functions.

Despite the beneficial effects of rehabilitation, tra-
ditional rehabilitation approaches suffer from several 
limitations [2], such as high clinical demand [3], a clin-
ical-centered model of rehabilitation [4], and limited 
adaptability to patients’ needs and characteristics [5].

In recent years, technological advances have overcome 
some barriers to the implementation of rehabilitation. 
For example, telerehabilitation can improve accessibility 
[6] and digital technologies can improve compliance and 
monitoring of home exercise [7].

Among the currently available technologies, robotics 
has arguably had the most transformative impact on how 
rehabilitation is provided. Indeed, robotic neurorehabili-
tation addresses the major challenges of traditional reha-
bilitation by offering precise, repetitive, and task-specific 
interventions, enhancing the potential for neurorecov-
ery [8]. These devices are often equipped with sensors to 
monitor and adapt to patients’ performance, facilitating 
personalized and adaptive rehabilitation regimens [9]. 
Furthermore, sensors allow to monitor different physi-
ological signals, thus providing an objective, operator-
independent, and measurable assessment of the patient 
both to design a proper rehabilitation plan spanning mul-
tiple sessions and to monitor the rehabilitation treatment 
adapting it while the single session is being performed 
[10]. Interestingly, the application of robotic devices has 
been quite pervasive and with a broad scope, as their 

application to several different conditions, such as stroke 
and autism [11] demonstrates.

More recently, the integration of artificial intelligence 
(AI) and machine learning (ML) into robotic rehabilita-
tion is bringing forth a wide range of opportunities to 
address the shortcomings of traditional approaches. The 
rationale for integrating AI into robotic rehabilitation lies 
mainly in the need for more personalized, dynamic, and 
responsive interventions [12]. AI algorithms, with their 
ability to analyze real-time data, adapt to individual pro-
gress, and optimize therapeutic protocols, address the 
limitations of traditional rehabilitation approaches. This 
combination of AI and robotics offers a synergistic plat-
form for enhancing clinical outcomes [13].

In this work, our objective is to overview the exist-
ing landscape of AI/ML usage in robotics rehabilitation 
encompassing various rehabilitative settings, ranging 
from motor to cognitive rehabilitation, thus highlighting 
trends and gaps in this field. In particular, we are inter-
ested in how AI/ML is embedded in robotics assistive 
devices that were developed and/or tested on human 
subjects, and what are the state-of-the-art performances 
across various tasks.

Related work
Some previous reviews have focused on the use of AI and 
robotics in rehabilitation. In Table  1 a summary of the 
characteristics of these reviews is reported, together with 
the ones of our study.

Three previous reviews [14–16] focused specifically 
on robotics and AI. However, these reviews did not 
perform a systematic analysis of the literature and/or 
are related to a single specific domain, e.g. upper limb 
[15] or cognitive [17], or to specific rehabilitation set-
ting, e.g. occupational rehabilitation [14]. The review 

Table 1 Key characteristics of previous relevant reviews and our study

a inferred by counting references in the bibliography of the paper

Ref Clinical 
conditions > 2

Cognitive Motor Specific focus on 
AI/ML

Systematic Number 
of 
papers

Fong et al., 2020 [14] No No Yes Yes No 76a

Ai et al., 2021 [15] No No Yes Yes No 27

Huo et al., 2021 [3] Yes No Yes No No 75a

Denecke and Baudoin, 2022 [16] Yes Yes Yes Yes No 93a

Rahman et al., 2023 [18] No Yes Yes Yes Yes 48

Sumner et al., 2023 [19] Yes No Yes Yes Yes 28

Zhang et al., 2023 [21] Yes Yes Yes No No 9287

Yuan et al. 2023 [17] Yes Yes No No Yes 47

Mennella et al., 2023 [20] Yes No Yes Yes Yes 35

Our study Yes Yes Yes Yes Yes 201
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by Huo et al. [3] is not focused specifically on robotics 
and machine learning but on technologies in general. 
Moreover, it addresses only motor rehabilitation. Three 
of the related previous reviews are indeed systematic 
[18–20] and included 48, 28 and 35 studies respec-
tively. The review by Rahman et  al. [18] is exclusively 
focused on stroke while the review by Sumner et  al. 
[19] is not specifically addressing robotics but, more 
broadly, technology in general and addresses only phys-
ical rehabilitation. Mennella et al. [20] conducted a sys-
tematic review of the usage of AI to specifically support 
remote rehabilitation. However, no  previous studies 
have systematically examined the broad usage of AI in 
robotic-assisted rehabilitation. Furthermore, none have 
specifically focused on on the reported performance of 
AI across various rehabilitative-related tasks, which is 
crucial to support the development of new methods.

Aim and contributions
To the best of our knowledge, this is the only system-
atic review that analyzes how AI and ML are currently 
exploited in robotics rehabilitation, spanning multiple 
diseases. Our review is not focused on a specific medi-
cal domain or body district but spans broadly across 
domains. Moreover, we did not consider only motor 
rehabilitation, but we also address neurocognitive reha-
bilitation, in light of the novel concept of an integrated 
neuromotor rehabilitation paradigm. The aim of our 
work is to provide a broad and comprehensive overview 
of the current state of integration of ML into robotic 
assistive devices targeted at rehabilitation.

In particular, the main contributions of our review 
are:

• We classify and discuss the different AI algorithms 
employed by robotic devices, according to the spe-
cific and well-established taxonomy of the ML field;

• We analyze the state-of-the-art of AI/ML in rehabili-
tation robotics, highlighting current reported perfor-
mance.

• We dedicate specific attention to the explainability of 
AI algorithms for rehabilitation robotics;

Additionally, we discuss robotics coupled with inte-
grated sensors and/or wearable sensors for patients’ 
assessment and evaluation; to achieve the aforemen-
tioned contributions, we focus on AI-enabled robotics 
for rehabilitation across several medical domains and dis-
tricts providing a comprehensive overview of the field;

This review may support researchers by summarizing 
AI/ML use and performance to support the development 
and implementation of robotics-assisted rehabilitation.

Methods
Search strategy
A literature search was conducted in IEEE Xplore 
(https:// ieeex plore. ieee. org/ Xplore) and Scopus (https:// 
www. scopus. com/) databases on October 26th, 2023. 
An advanced search was implemented in each electronic 
database concerning AI/ML methods applied in the reha-
bilitation robotics context. We used the same search 
string for IEEE Xplore and Scopus, with the only differ-
ence due to the specific syntax required by the two data-
bases. The queries performed are reported in Table  S1. 
Each query has 3 components, combined with a logi-
cal AND operator. One component captures the AI/ML 
context, where we outlined the different synonyms usu-
ally employed in this field, as well as explicit mentions to 
specific AI/ML algorithms, such as “random forest” or 
“neural network”. The second components represent the 
rehabilitation concept nuances, and the third component 
is the robotics aspect.

Article selection and screening process
The article selection process was based on PRISMA 
guidelines [22] and is represented in Fig. 1.

We removed duplicated articles and those not writ-
ten in English. Titles and abstracts were screened by 5 
reviewers with Abstrackr (http:// abstr ackr. cebm. brown. 
edu), a semi-automated tool that allows reviewers to 
independently screen abstracts retrieved [23, 24]. Each 
record was screened by one reviewer independently, with 
records assigned randomly. This first screening was per-
formed to filter out papers that did meet simple exclu-
sion criteria, verifiable from the abstract itself, such as 
reviews, conference proceedings and articles presenting 
prototypes. Subsequently, full-text screening was con-
ducted by the 5 reviewers according to the inclusion and 
exclusion criteria for eligibility outlined below.

The inclusion criteria were the following: (i) articles 
describing the use of AI and ML for robotic-assisted 
rehabilitation; (ii) articles with specific applications in 
health; (iii) articles where a physical device is presented/
discussed, (iv) articles involving human subjects (healthy 
individuals or patients) for system development and/or 
validation.

The exclusion criteria were the following: (i) articles 
that describe a generic robotics AI system without an 
explicit application in rehabilitation; (ii) conference 
proceedings, as well as tutorials and conference pan-
els; (iii) articles describing systems that are developed/
validated only on simulated data; (iv) the system devel-
opment involved less than 5 human subjects; (v) arti-
cles describing systems based on sensors only (without 
an actual robot); (vi) related to surgery; (vii) related to 

https://ieeexplore.ieee.org/Xplore
https://www.scopus.com/
https://www.scopus.com/
http://abstrackr.cebm.brown.edu
http://abstrackr.cebm.brown.edu
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sports; (viii) articles describing wheelchair devices not 
to be used within rehabilitation exercises.

Tagging strategy
To devise a taxonomy of ML for rehabilitation robot-
ics, we assigned different tags in various categories 
to the selected papers. These tags encompass differ-
ent relevant aspects, outlined in Table 2. Each tag was 
assigned using the Zotero reference manager (https:// 
www. zotero. org).

Results
A total of 201 papers met the inclusion criteria and were 
included in this review (Fig. 1). In the following we ana-
lyze the papers in depth, leveraging the assigned tags to 
categorize articles and provide further insights. Note 
that, even within the same tag type (listed in Table 2), a 
paper may have been labeled with more than one value 
per tag. The current section has been organized accord-
ing to the most prevalent aims (see aim tag in Table  2 
and Fig. 2) identified in our review, in order to give better 
structure to the presentation of the results, and organize 

Fig. 1 PRISMA diagram for systematic review

https://www.zotero.org
https://www.zotero.org
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Table 2 List of tags applied to each included article and examples

Tag Description Examples of possible values

Aim Aim of ML within the proposed rehabilitation robotics 
system

Trajectory prediction, movement classification, person-
alized rehabilitation

Algorithm type Specific type of AI/ML used Logistic_regression, neural_network

Input data Type of the input data to the AI/ML Anthropometric_data, clinical_data, sensor_data_from_
robot

User User of the system Patient, rehab_professional

Localization of the robot The placement of the robot Upper_limb, hand, lower_limb, head

Localization of the sensors Placement of sensors Upper_limb, hand, lower_limb, head

Disease type Type of the disease/prognosis specifically reported Leg_injury, stroke

Settings Setting where the rehabilitation sessions are performed Inpatients, outpatients, at home, healthy individuals

Domain Domain of the rehabilitation Upper_limb, lower_limb, cognitive

Rehabilitation system constraints Whether the rehabilitative system is stationary (i.e. large 
device and/or connected to energy net)

stationary, portable

Fig. 2 Most prevalent aims for which AI/ML is used in rehabilitation robotics
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them in a taxonomy of uses of ML in robotic-assisted 
rehabilitation. The complete list of retrieved papers, 
along with their tags, is reported in the Supplementary 
File.

We identified 20 different aims of the AI/ML systems 
embedded in robotics rehabilitation (Fig.  3a). Here, we 
comment on the most prevalent ones. A good propor-
tion of the screened papers (19%) used AI/ML to clas-
sify upper (UL) and/or lower lib (LL) movements. Most 
papers (47%) employed AI/ML to control the robot itself 
in various ways: by predicting user intention and move-
ment trajectory [25, 26], by learning the arm support 
needed during training in a personalized and adaptative 
setting [27, 28], by implementing supervised [29–34], 
regression-based [35–43], and reinforcement learning-
based controllers [44]. ML can also control the robot by 
modulating stiffness [45], regulating synergies in robotic 
hands [46], predicting force from EMG signals [47], joint 
angles [48–52] and torque [53–56], or by compensating 
for dynamic interactions [57]. Exoskeleton control can 
be achieved by generating personalized gait trajectories 
through Neural Network (NN) [58] or Gaussian pro-
cesses [59]. Control of a hip exoskeleton by predicting 
ground reaction forces and moments through NN, Sup-
port Vector Machines (SVM) and Random Forest (RF) 
algorithms was proposed by [60], while control of an 
upper limb exoskeleton based on voice commands and 
recurrent network (RNN) was proposed in [61]. Robot 
control can be driven by user intention from EEG [62–
65], by predicting movement-based EMG signals [66–68] 
or based on kinematics features derived from robots and 
Inertial Measurement Unit (IMU) [69]. NNs are particu-
larly implemented to predict end-effector orientation 
from joint angles [70]. Robot control can greatly sup-
port mirror therapy, when one side of the patient is more 
affected by disability in comparison with the other side 
[71] robotic mirror therapy (RMT) transfers the motion 
of the healthy limb (HL) to the impaired limb (IL), in 
which a robot interacts with and assists the IL to mimic 
the action of the HL to stimulate the active participation 
of the injured muscles [72]. [73] uses NN to control the 
impaired lower limb in hemiplegic patients.

Movement classification
A range of 29 studies performed supervised ML to iden-
tify hand gestures [74–79], manual tasks [80–82] grasp-
ing [83–85], and finger movement [86]. In Table  S2, we 
report the complete list of papers using AI/ML to pre-
dict hand movement, along with the number of subjects 
involved and the performance reported by the authors, 
often in terms of accuracy. For instance, authors in [87] 
implemented a SVM to recognize a set of grasp ges-
tures based on input data from the SCRIPT exoskeleton 

to predict the trajectory of the robot. The system was 
trained and tested on 10 healthy and 8 stroke subjects. 
Notably, the recall of the SVM in healthy individuals was 
91% on average, while the same metrics decreased to 75% 
in stroke patients. A decrease in performance between 
healthy subjects and amputees was reported also by [88] 
(90% of accuracy vs 68%), where authors implemented 
a k-Nearest Neighbors (k-NN) to classify 7 different 
gestures trained on EMG signals. Also in [89] authors 
implemented a system for grasp prediction, with the 
aim of controlling a robotic arm based on EMG signals. 
In this case, data from 5 healthy subjects were collected 
to train and test a RF, that showed 92% accuracy, in line 
with the one reported in [87] for healthy subjects. These 
studies focused on different hand movement classes for 
prediction: for instance, in [90] six different hand motion 
patterns were predicted (hand closing, hand open-
ing, thumb, index and middle fingers closing and open-
ing, middle, ring and little fingers opening and closing), 
while in [91–93] authors binary predict whether the sub-
ject wearing hand exoskeleton is opening or closing the 
hand. In other works, grasping with objects interaction is 
shown [94]. As the predicted classes vary across studies, 
it is difficult to compare performance results in an unbi-
ased way. Four studies evaluated the performance both 
online (i.e. when the subjects’ signals are collected in real-
time and the deployed ML model is exploited for predic-
tion in real-time) and offline [78, 95–97], all reporting a 
decrease in performance in the offline settings in com-
parison with the online settings, even up to 7% in accu-
racy (Table  S2). 6 studies trained and/or tested their 
classification system specifically on patients, and not only 
on healthy individuals, such as stroke patients [87, 98], 
amputees [88, 94] and children with autism [99]. 21 stud-
ies exploited as input for the ML the EMG signals, while 
3 of them used EEG signals. [100] compared the accuracy 
of an EMG-trained NN with an EEG-trained NN, finding 
that the EMG-based classifier has higher performance 
(Table S2). 12 studies compared multiple ML classifiers. 
SVM is selected as the classifier in 16 studies, while k-NN 
in 6. NNs, Multilayer Perceptrons (MLP) and convolu-
tional neural networks (CNN) are employed in 11 cases 
each. Temporal Convolutional Network (TCN) was used 
by [101].

15 studies investigated supervised ML approaches to 
identify specific arm gesture [102, 103] extensions [104, 
105], wrist [106, 107] and elbow movement (Table  S3). 
For instance, [108] developed a NN able to predict shoul-
der and elbow position thus discriminating flexion, pro-
nation, grasping, etc. The input of the model was EMG 
signals, and the performance was recorded both on 
healthy subjects and on patients with central cord syn-
dromes (CCS). Also in this case, as for the hand gesture 
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Fig. 3 a For each “aim” category, the number of papers using AI/ML for the specific aim is reported. b For each AI/ML algorithm, the number 
of papers using the specific algorithm is reported. c For each input data type, the number of papers indicating that input data for their AI/ML 
system is reported
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recognition studies [87, 88] the authors reported a strong 
decrease in the performance of their method, which was 
initially trained on healthy individuals, on CCS patients, 
as the accuracy on healthy subjects was 90%, while for 
CCS patients it degraded to 68%. Two papers compared 
the performance of offline vs online settings, confirming 
a lower accuracy in the latter case [109, 110]. As for hand 
recognition, the most popular algorithms were SVM and 
NNs [111] (Fig. 3b).

Lower limb movement recognition is either referred 
to specifically identifying gait, gait phases and patterns, 
or to recognizing different action modes, such as sitting 
or lying [112], turning in specific directions, start and 
stopping walking [113] (Table  S4). Many of the related 
articles focused on gait recognition: gait recognition has 
been treated as a multi-class classification [114–124] or 
a binary classification problem [125–127], or even as an 
anomaly detection problem using One Class SVM to 
detect abnormal gait patterns [128]. In the first case, the 
supervised model predicts the gait phases or whether the 
subject is walking at level ground or ascending/descend-
ing stairs and ramps, and the predicted classes are either 
stance or swing. As in upper limb recognition studies, 
most of the wforks (92%) trained and tested the ML on 
healthy subjects. [126] tested a Logistic Regression (LG) 
for movement recognition on 10 healthy participants 
and 3 stroke patients, finding a decrease in accuracy of 

around 5% on patients. A strong decrease in performance 
between online and offline settings is also reported [127, 
129]. While for upper limb movement prediction, the 
most prevalent ML input type is EMG signals [130], for 
lower limb kinematics data, pressure and joint angles are 
also exploited. [111] demonstrated that the combination 
of EMG signals and joint angles as input of the model 
leads to an increase in performance in comparison with 
models trained on EMG signals alone. SVM and NN 
are the most used algorithms for lower limb movement 
recognition.

Movement trajectory prediction
Table  S5 reports the studies where AI/ML is used to 
predict a movement trajectory. In 7 cases, the region of 
interest of the robot was the lower limb [131–138] while 
in 9 cases the aim was to predict the trajectory of the 
moving upper limb [139–144]. Since trajectory predic-
tion is a regression problem, most studies evaluated the 
performance in terms of Mean Squared Error (MSE) 
computed between the true trajectory and the predicted 
trajectory. Deep learning models were the most used for 
this specific aim, and many works employed RNNs such 
as LSTM. Input data vary from anthropometric features 
combined with joint angles [145] or gait features [134, 
135] to images [132, 139] and EMG [140]. Notably, none 
of the selected papers trained or tested the algorithm on 

Fig. 3 continued
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patients, but only on healthy individuals, except for [146]. 
Similarly to the case of UL and LL movement classifica-
tion, [147] reported decreased performance in the online 
setting compared to the offline one.

Patient assessment during or after rehabilitation
A variety of studies (19) used ML to assess patients dur-
ing or after the rehabilitation session (Table  S6). [120] 
designed a robotic walker able to discriminate gait 
asymmetries. [148] proposed a fuzzy NN to predict 
upper limbs levels of motor ability to evaluate rehabili-
tation outcomes without the need of a therapist. ML is 
also applied to directly predict relevant clinical scale. In 
[149], an eXtreme Gradient Boosting model (XGBoost) 
is trained to predict a set of popular clinical evalua-
tion measures, in particular, the 6-min walk distance 
(6MWD) and the Fugl-Meyer assessment lower-limb 
sub scale (FMA-LE), of stroke patients. The 6MWD 
test is commonly conducted to assess functional exer-
cise capacity, measuring the distance (in meters) that a 
patient can walk over a period of six minutes. The Figl-
Meyer Assessment is a stroke-specific scale to measure 
impairment over five different domains, including motor 
and sensory functioning, balance, joint range motion and 
joint pain. The AI system takes as input the gait param-
eters and joint torque and it was tested in a clinical trial 
with 66 stroke patients. [150] developed an ensemble 
of NN models to predict various clinical scales, includ-
ing Fugl-Meyer, from kinematics and kinetics measure-
ments taken from the robot. The system was trained on 
208 stroke patients and tested on data from the same 
cohort. Yet, we cannot compare the results with [149], 
since the performance metrics reported are different 
(MSE vs R2). Also in [151], EMG signals are the input of 
a network that predicts the FMA and the Modified Ash-
worth Scale (MAS). The system was trained and tested 
on 29 stroke patients, and evaluated in terms of cor-
relation between the ML-generated prediction and the 
clinical scores computed by a therapist. Barthel index 
predicted from clinical characteristics and rehabilitative 
session assessment of post-stoke patients was proposed 
by [152], while [153] trained ensemble NNs to predict the 
Chedoke-McMaster scale in stroke patients. [154] used 
different ML algorithms to predict clinical evaluations 
of a rehabilitative exercise in stroke patients, finding that 
the most performing algorithm in terms of accuracy was 
k-NN. [155] and [156] applied SVM and k-means on tor-
ques and angular positions of paralyzed wrists, collected 
during the rehabilitative exercises performed by patients 
to predict the Brunnstrom stage, a clinical score describ-
ing the development of the brain’s ability to move and to 
reorganize after stroke. AI/ML can be used also to evalu-
ate patients in terms of energy expenditure, as in [157], 

when the authors trained LSTM and CNN to infer energy 
expenditure during a rehabilitation session.

In [158] the authors employed logistic regression to 
analyze the association between several clinically rele-
vant covariates, such as sex, age, BMI, history of diabetes, 
hypertension, and poor motor function [158]. Notably, 
in this work 205 patients with cerebral hemorrhage were 
recruited and randomized into case and control groups: 
the case group performed robotics rehabilitation of the 
hand, while the control group was treated with stand-
ard care rehabilitation. Also in [159], a randomized 
controlled trial was performed, with 50 subacute stroke 
patients undergoing 4  weeks of treatment with the 
GaitTrainer robot, and 50 patients treated with standard 
care. The objective of the study was to identify the clinical 
characteristics of patients who could benefit from robotic 
walking training with respect to conventional walking 
therapy. In [160], the authors used post-stroke patients’ 
clinical data and rehabilitative session data (such as speed 
and force) from Lokomat, a wearable robot for lower 
limb rehabilitation, to train different ML algorithms, 
such as Decision Tree (DT), RF, and SVM and predict 
rehabilitation outcome at the 12th rehabilitative session. 
Authors found that the most important characteristic to 
determine the outcome was body weight. An observa-
tional study on 55 stroke patients who performed robot-
ics-assisted rehabilitation trained a logistic regression 
model to determine the most important factors towards 
positive rehabilitation outcome, finding that gender and 
Box and Block Test (BBT) score were the most impor-
tant covariates [161]. Also in [162] authors investigated 
the importance of different clinical characteristics and 
robot-related measures on rehabilitation outcomes for 
stroke patients. Motor recovery after stroke using NN 
and k-NN was proposed by [163], finding that time since 
injury, baseline functional and motor ability may support 
the identification of patients most likely to benefit from 
the rehabilitation intervention. [164] used linear regres-
sion to detect the period of inactivity during patients’ 
rehabilitation sessions, which can serve as a proxy for 
patients’ evaluation. Muscle recruitment was predicted 
through MLP from kinematics data [165] in 7 patients 
with cerebral palsy. Real-time audio-visual biofeedback 
of the patient’s planar flexor recruitment was provided 
during rehabilitation, thanks to an MLP prediction.

Prediction of patient intention
Twentyfour different works employed AI/ML to pre-
dict user movement intention (Table  S7). In this case, 
all the retrieved studies tested the approach on healthy 
subjects, and none featured actual patients undergoing 
rehabilitation. Most of them used EEG (7 cases) [166–
171] or EMG (9 cases) [172–178] as input signals. [179] 
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predicted upper limb intention to move towards right 
or left by using an SVM fed with optical brain function 
imaging, while [180] exploited 3D skeletal angles from 
Kinect. [181, 182] used IMU-derived signals and forces 
and [183] exploited kinematics features to infer the inten-
tion to sit or stand, while [184] used trunk motion data as 
input. [168] both predicted intention vs non-intention to 
move, and the desired speed (fast vs slow). All the stud-
ies reported high accuracy, but only [166] tested the ML 
models both offline and online, confirming a decrease in 
performance in the online settings, as also reported in 
studies predicting movement (see 3.1).

Personalized rehabilitation
Several studies (11) show that ML can also support per-
sonalized therapy (Table  S8), by estimating motion and 
model parameters [185] and the appropriate control 
gains based on subject’s characteristics [186–188] or 
by predicting a specific exercise [189]. [72, 190] imple-
mented a Support Vector Regression to estimate model 
parameters of pelvic motion based on robotics-extracted 
features. In [191], the authors implemented an ensemble 
of LSTM and CNN to estimate personalized gait speed 
and stride length from joint angles. In [192] reinforce-
ment learning algorithm is proposed to adapt movement 
trajectory parameters to varying patient performance, 
thus optimizing robot’s trajectory and stiffness. In [193], 
a controller based on Gaussian Network is developed to 
model the functional capability of subjects and to provide 
a coherent task to challenge them. Personalized reha-
bilitation includes also approaches aimed at personal-
ized assessment (see Sect. "Patient assessment during or 
after rehabilitation"), as in [194], where authors integrate 
NNs with a rule-based model to assess the performance 
of exercises for personalized post-stroke therapy. [195] 
applied unsupervised clustering techniques to define task 
motion based on patient’s trajectories.

Compensation detection
Four articles used ML to detect compensatory postures 
or motions that can lead to suboptimal recovery out-
comes. In particular, [196] applied a multi-label k-Near-
est Neighbor classifier and a multi-label Decision Tree 
classifier to detect compensatory postures in ten patients 
with stroke. To this aim kinematics data collected by an 
RGB camera and the OpenPose system were used. The 
performance of the two classifiers was similar and they 
could detect quite accurately (accuracy: 85%) some com-
pensatory postures. Forward trunk displacement and 
trunk rotation were the easiest compensatory move-
ments to detect, followed by shoulder elevation. In [197] 
motion compensation was detected by using pressure sig-
nals and applying an SVM algorithm. Experiments were 

performed in subjects with stroke both online and offline. 
Good classification performance was obtained in both 
offline (F1-score: 98.60%) and online (F1-score: 98.64%) 
compensation analysis; in the online test, a rehabilita-
tion robot also provided an assistive force to patients to 
reduce compensation thus decreasing trunk movements 
during exercises. The same group applied an analogous 
strategy to detect posture compensation in eight subjects 
with stroke during an online task [198]. Also in this case 
good performance (F1-score around 95%) was obtained. 
In addition, the authors demonstrated the effectiveness of 
reducing compensation by applying force feedback with 
a robot or audio feedback using virtual reality. Finally, 
in [199], compensation in patients with dyskinesia was 
detected by using a trunk restraint belt, acquiring sEMG, 
angular displacement, and force, and applying Linear 
Discriminant Analysis (LDA), k-NN and SVM classifiers. 
SVM was the top-performing algorithm in detecting dif-
ferent types of compensatory motions (F1-score: 97.58%). 
In [200] compensation detection was performed using 
SVM and RNN on input data from Kinect.

Support patient motivation
AI and ML have also been used to support patient’s moti-
vation during robotic therapy. Four papers addressed 
this aim. In [201], clinical data as well as data acquired 
by the robot were collected while subjects with stroke 
wore the SUBAR, a gait training robot, and performed 
robot-assisted gait training. A neuro-fuzzy algorithm was 
trained to provide the right verbal clue on the basis of 
these collected data and provided good performances in 
the testing phase (accuracy: 93.7%). [202] implemented 
a modified version of the’Simon Says’ game, which has 
the function of motivating patients, making therapies 
more engaging. In particular, elderly subjects had to imi-
tate some exercises performed by the robot. The Kinect 
was used to record subject’s positions and DT, KNN and 
SVM were applied for posture classification. DT resulted 
had higher performances in comparison with the other 
algorithms in the classification task (accuracy: 99.61%). 
In [203] the authors attempted to predict the desired 
level of difficulty in order to increase the motivation of 
the subject while performing a robot-assisted reaching 
task. The prediction of desirable difficulty according to 
the patient was done based on motor performance and 
physiological metrics, applying a fuzzy NN approach. By 
practicing the task at their desirable difficulties, subjects 
reported lower required effort to complete the task. An 
interesting application is reported in [204], where ML 
was applied to predict the behavior of an infant towards 
a robot. Data obtained by the Kinect were used to train 
a DT, and then a Markovian model for robot control 
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was developed where predictors were used to promote 
action-based goals for the infants.

Assess patient participation
Patients’ participation in a robotic task is important 
to increase the effect of the treatment. In [205] a lower 
limb rehabilitation robot using joint torque sensors and 
six-dimensional force sensors on the foot soles were used 
to acquire force information. These signals were used to 
train a hybrid quantum particle swarm optimization and 
SVM algorithm. Data from 10 healthy volunteers per-
forming different difficulty training tasks were used to 
predict both the level of participation and the task diffi-
culty for two other volunteers obtaining an accuracy of 
80%. In [206] EEG signals were collected in healthy vol-
unteers and used to assess cognitive engagement during 
the execution of an adaptive Go/No-Go paradigm while 
interacting with the Bionik InMotion Arm rehabilitation 
robot. A CNN was applied to predict the level of cogni-
tive engagement for two classes (cognitively engaged vs 
disengaged) obtaining an accuracy of 88%, while [207] 
compared SVM, Naïve Bayes, RF and MLP for predicting 
rest, clench, or attention based on EEG signals using data 
from 5 healthy individuals and achieving performance 
from 73% (RF) to 77% (SVM) of accuracy.

Emotion recognition
The emotional status of the patient can greatly affect 
rehabilitation outcomes. ML and AI can support thera-
pists by predicting patient’s emotion during the reha-
bilitation exercise. [208] developed an SVM to predict 3 
anxiety levels in patients with stroke using multimodal 
physiological signals including EMG, ECG, skin conduct-
ance, and respiration. The model reached an accuracy of 
around 80% in 12 stroke patients. Emotion recognition 
in stroke was performed also in [209] where camera data 
were obtained while the subjects performed rehabilita-
tion tasks with a hand exoskeleton. An SVM model was 
applied for emotion classification reaching an accuracy of 
86%. [210] applied a supervised artificial NN to classify 
facial emotions acquired using infrared thermal images 
of healthy individuals performing rehabilitation robotic 
therapy integrated with games obtaining an accuracy of 
92.6%. [211] developed a CNN for emotion recognition 
while subjects with ADHD interacted with the humanoid 
robot Pepper. The model was trained on a public dataset 
and tested on 5 ADHD children, albeit the performance 
achieved in the test was not reported in the paper.

Other notable aims for ML in robotics‑assisted 
rehabilitation
ML-based anomaly detection, whose aim is to identify 
rare events, has been employed [212] to capture robotic 

prosthesis malfunctioning based on sensor data, with 
the future goal of designing a fault detection system. In 
particular, the authors applied the one Class SVM and a 
Malanobis distance-based classifier.

Within the autism domain, [213] implemented an NN 
to identify the patient playing with modular robotics tiles 
based on how they interact with the tiles. The cohort 
consisted of 7 children with different types of autistic 
disorders.

In [214] authors explore how ML can support not only 
the control of a robotic prosthetic arm but also the gener-
ation of vibrotactile feedback regarding the arm’s contact 
with its workspace. The task performance of the ML-
based system on healthy subjects was significantly higher 
in comparison with the purely reactive feedback from 
the device. A similar attempt to leverage biofeedback has 
been proposed in [165].

To demonstrate the effectiveness of the robot dur-
ing gait rehabilitation of children with cerebral palsy, a 
Gaussian process regressor applied to functional near-
infrared spectroscopy (fNIRS) data was used to test 
whether the assessed changes in the brain activity of 
patients were associated with modifications in the motor 
abilities [215].

ML can be also applied for fall detection during robotic 
rehabilitation or for predicting balance loss. In [216] a 
deep NN was applied to detect fall during the rehabili-
tation with a walking-aid robot. Force signals were used 
as input for the model which obtained an accuracy of 
98.8%. To avoid injury to the patients, [217] trained an 
LSTM to predict early emergency stop during robotic 
gait rehabilitation.

In [218] the authors implemented an LSTM that mim-
ics the therapist-patient interaction and the therapist’s 
behavior to provide robotic assistance during trajectory 
tracking. [219, 220] used NNs to estimate slope incline in 
different terrains for a lower limb exoskeleton. [221] pro-
posed the use of SVM to predict the type of rehabilitative 
session (active, passive or resistive) from EMG data. [222] 
exploited several supervised models, such as Decision 
Trees and k-NN to recognize speech for guiding therapy.

Discussion
With this systematic review, we described the current 
usage of AI/ML in robotics-assisted rehabilitation.

We found that most of the retrieved works (146 stud-
ies, 72%) involved the participation of healthy individuals 
for data collection, training, and testing. Only 55 studies 
involved actual patients with a medical condition, mainly 
stroke patients (see Supplementary File). Among these, 
the median number of patients involved in the studies is 
9 (with a value of 18 for the 75th percentile) highlighting 
that validation studies for AI in robotics are still carried 
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out on rather small patient cohorts. Studies using ML to 
assess patient clinical status during/after rehabilitation 
(Sect. "Patient assessment during or after rehabilitation") 
were those reporting the higher number of patients, with 
a median of 66 individuals. Few studies have recruited 
more than 100 patients: [163] and [150] recruited 293 
and 208 stroke patients respectively, [158] 205 patients 
with cerebral hemorrhage on basal ganglia). Only one 
study [99] was focused on 7 children with autism: here 
the rehabilitative setup consists of a humanized robot 
performing different hand gestures the children were 
supposed to replicate.

36% of the studies did not explicitly explain the train-
ing and evaluation strategy adopted by the authors. The 
cross-subject setting was adopted in 16% of the studies, 
i.e. the data collected from a specific individual were used 
exclusively in either the training or the test set. On the 
contrary, in a non-cross-subject setting, multiple meas-
ures collected from a single participant may be assigned 
randomly to the training and the test set, and it was 
adopted in 48% of the studies. In this latter case, there 
is the possibility that the ML model learns user-specific 
characteristics to perform inference instead of rules that 
can generalize well on data from new individuals. This is 
especially true when using ML for movement classifica-
tion and trajectory predictions [223–225]. Among the 
papers that carefully describe their training and testing 
strategy, [69, 183, 215] adopted a Leave-One-Subject-Out 
(LOSO) Cross Validation, where one subject is kept for 
testing and the remaining for training iteratively. [132, 
186] specifically, select a subset of individuals for train-
ing and a distinct subset for testing. Notably, none of 
the retrieved papers explicitly stated that the TRIPOD-
AI checklist [226] for reporting clinical models based on 
ML was followed. Only 9 studies (4%) openly shared their 
data, and 4 studies (2%) made their code publicly avail-
able. As code and data were rarely shared, there was lit-
tle opportunity for the research community to reproduce 
the results and implement new systems based on data 
previously collected by other studies. Only four of the 
analyzed papers performed case–control studies [203, 
227].

Another relevant aspect regarding the performance 
of ML models applied in rehabilitative settings emerged 
from our review: all 8 studies that compared “offline” vs 
“online” performance reported an important decrease 
in performance in the latter case (see Supplementary 
Tables). Decreases in performance were also reported 
when the AI/ML was applied to patients, in comparison 
with the performance on healthy individuals [87, 88]. 
These findings are of significant interest as they suggest 
that the ML performance estimated during development 
may relevantly underestimate the performance of the 

system during deployment and usage in clinical practice. 
Notably, (Chowdhury et al. 2018) recognized the poten-
tial negative impact of dataset shifts and addressed it by 
designing a specific ML classifier that can adapt its clas-
sification procedure when dataset shifts occur. There-
fore, we advocate for the implementation of strategies 
for monitoring the performance over time, and detect 
out-of-distribution samples [228–230]. Supplementary 
Table  S2-S8 show, for each study, the reported perfor-
mance of AI across different tasks (hand gesture recogni-
tion, upper limb movement recognition, gait prediction 
and lower limb movement recognition, trajectory pre-
diction, patient intention prediction and personalized 
rehabilitation). Relevant information, such as number of 
subject, region of interest, and type of disease are also 
reported.

Most of the AI/ML systems analyzed process input 
data from sensors (Fig.  3c). Neural networks and deep 
learning approaches are the most frequently applied 
algorithms (Fig.  3b), representing the most employed 
models to solve robot control tasks, in particular to con-
trol upper limb exoskeletons [67]. We further examined 
whether simpler models were favored over more complex 
algorithms, such as deep networks, in portable systems 
where hardware limitations might restrict the feasibility 
of running complex algorithms. When analyzing by reha-
bilitative system type (stationary vs. portable), we found 
that deep networks were predominantly used across both 
categories, irrespective of hardware constraints. How-
ever, simpler algorithms like decision trees appeared 
more frequently in portable devices (12%) compared to 
stationary ones (7%). Additionally, we stratified the analy-
sis based on whether the AI/ML system operated online 
(i.e., during a rehabilitative session) or offline. Here, too, 
we observed no significant differences in algorithmic 
preferences between the two operational modes, poten-
tially indicating that even complex algorithms achieve 
adequate runtime performance in both settings. While 
deep networks often prove to be highly performing, their 
intrinsic “black box” nature may hamper the transparency 
and explainability of the predictions, which is a crucial 
aspect of promoting trust in AI/ML and its adoption in 
the medical domain, including rehabilitation. Trustwor-
thiness and transparency have been recently outlined 
among the requirements for AI/ML medical applications 
by the AI act, the first binding regulations of AI pro-
moted by the European Union.

This is also relevant in robotics applications where 
the correct interpretation of AI algorithms may lead to 
an improvement in human–robot interactions limiting 
potential consequences of errors and providing human-
interpretable feedback to encourage human oversight of 
rehabilitation technology. In our review, some studies 
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have implemented explainable AI models to improve user 
feedback in robot fault recovery [231, 232], while very 
few studies have addressed the problem of explaining 
the output of the model in the field of robotic neurore-
habilitation. For example, in [233] an interpretable deep 
learning model was applied to decode neural activity pre-
ceding balance loss during standing with a lower-limb 
exoskeleton, while in [234] an interpretable approach 
based on Grad-CAM was used to predict balance loss 
while wearing an exoskeleton using electroencephalo-
graphic signals. Interpretable-by-design models may also 
be useful to highlight relevant prognostic factors, as in 
[159], where the authors found that a patient’s reduced 
autonomy was a negative prognostic factor for conven-
tional therapy, but not for robotic rehabilitation, by fit-
ting a binary logistic regression. Thus, for future research 
in AI applied to robotic neurorehabilitation, there is the 
need to focus on developing algorithms that are not only 
well performing, but also interpretable. Interpretation 
of ML models can improve clinicians’ confidence in AI 
technologies, facilitating their adoption in clinical set-
tings. Explainability enables clinicians to understand the 
rationale behind AI-driven decisions, facilitating a more 
collaborative approach to patient care and enabling more 
nuanced interventions. Current AI-based rehabilitative 
systems often lack inclusivity, with underrepresented 
populations, such as pediatric, geriatric, or minority 
groups, being insufficiently addressed. To bridge this 
gap, tailored AI models should be developed and vali-
dated for specific subgroups to ensure their effectiveness 
and safety. For example, algorithms trained on adult data 
should be systematically adapted and tested for pedi-
atric populations to prevent performance degradation. 
Data diversity could be achieved also thanks to global 
collaborations and data-sharing initiatives. Additionally, 
lack lack of standardized evaluation metrics and openly 
available benchmarks limits the comparability and repro-
ducibility of AI-driven systems. Developing open-access 
benchmarks specific to rehabilitation robotics would 
enable researchers to evaluate their algorithms against 
well-defined standards.

Integrating AI technologies into clinical practice 
demands careful consideration of various ethical aspects. 
Among these, safeguarding data privacy is essential to 
uphold patient autonomy and ensure the ethical use 
of sensitive information [235]. However, this impera-
tive often conflicts with the principles of open science, 
which advocate for data sharing in open repositories to 
promote research transparency and reproducibility. Bal-
ancing privacy concerns with open science standards 
thus represents a complex challenge that the field must 
address [236]. Another ethical consideration lies in miti-
gating automation bias—the tendency to over-rely on 

AI outputs without critical evaluation. While AI offers 
substantial potential to support clinicians across diverse 
tasks, it is essential to foster a culture of critical engage-
ment with AI recommendations to prevent undue reli-
ance and potential errors. By training clinicians to use AI 
as a support tool, rather than a definitive decision-maker, 
the risk of automation bias can be minimized, thereby 
enhancing both patient safety and clinical outcome [235]. 
By proactively tackling these issues, the adoption of AI 
in rehabilitation can proceed responsibly, with a focus 
on building trustworthy and equitable healthcare solu-
tions. Future research should explore several key areas 
to advance AI-based rehabilitative systems. One criti-
cal area is the generalizability of these systems across 
diverse patient populations, ensuring they are adapt-
able and effective for varying demographics and clinical 
needs. Additionally, integrating AI-driven rehabilitation 
tools with Electronic Health Records (EHRs) and other 
clinically relevant repositories could enable a more com-
prehensive, multimodal analysis of patient data. Such 
integration would facilitate a holistic view of patient 
health, improve the continuity of care, and enhance per-
sonalized treatment strategies. These future directions 
hold the potential to broaden the scope and impact of AI-
enhanced rehabilitation across diverse clinical contexts.

Conclusion
We have performed a systematic review to outline the 
current landscape of AI/ML usage within robotics-
assisted rehabilitation, by analyzing different dimensions, 
such as the aim of the AI/ML system, the algorithm 
types, and input data types. For specific groups of papers, 
such as those using AI/ML to classify hand gestures, and 
arm movements, or to predict trajectories, we also pro-
vide reference performance metrics as Supplementary 
Tables, in order to enable researchers in the field to eas-
ily retrieve current state-of-the-art performance, and 
benchmark their own work.

Despite the prevalence of use of AI/ML in this field, 
we found several issues that still need to be addressed. 
Only a minority of studies involve actual patients, with 
the majority of evaluations focusing instead on healthy 
volunteers. Children are significantly underrepresented, 
appearing in only 3% of the studies. This lack of repre-
sentation makes it difficult to rule out, or even quantify, 
significant deterioration of AI/ML performance when 
technologies tested on adults are applied to a pediat-
ric population. Furthermore, there is a lack of standard 
procedures for training and testing the AI/ML systems 
that hampers the comparison of predictive results across 
studies in the rehabilitation field. Limited sharing of data 
and code hinders open science and reproducibility, as 
well as easy design and execution of follow-up studies 



Page 14 of 20Nicora et al. Journal of NeuroEngineering and Rehabilitation           (2025) 22:79 

by independent investigators. Even though Deep Learn-
ing is one of the most applied techniques in this field, we 
posit that better integration of XAI methods should be 
promoted. Additionally, poor generalization ability often 
emerged: systems to monitor the performance over time 
are therefore needed to promote safe application within 
clinical practice.
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