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Abstract 

Background  Sensor-based technologies have been widely used in fall risk assessment. To enhance the model’s 
robustness and reliability, it is crucial to analyze and discuss the factors contributing to the misclassification of certain 
individuals, enabling purposeful and interpretable refinement.

Methods  This study identified an abnormal gait pattern termed “Recessive weak foot (RWF),” characterized by a dis-
continuous high-risk gait on the weak foot side, observed through weak foot feature space. This condition negatively 
affected the training and performance of fall risk assessment models. To address this, we proposed a trainable thresh-
old method to discriminate individuals with this pattern, thereby enhancing the model’s generalization performance. 
We conducted feasibility and ablation studies on two self-established datasets and tested the compatibility on two 
published gait-related Parkinson’s disease (PD) datasets.

Results  Guided by a customized index and the optimized adaptive thresholds, our method effectively screened 
out the RWF individuals. Specifically, after fine adaptation, the individual-specific models could achieve accuracies 
of 87.5% and 73.6% on an enhanced dataset. Compared to the baseline, the proposed two-stage model demon-
strated improved performance, with an accuracy of 85.4% and sensitivity of 87.5%. In PD dataset, our method miti-
gated potential overfitting from low feature dimensions, increasing accuracy by 4.7%.

Conclusions  Our results indicate the proposed method enhanced model generalization by allowing the model 
to account for individual differences in gait patterns and served as an effective tool for quality control, helping 
to reduce misdiagnosis. The identification of the RWF gait pattern prompted connections to related studies and theo-
ries, suggesting avenues for further research. Future investigations are needed to further explore the implications 
of this gait pattern and verify the method’s compatibility.

Keywords  Fall risk assessment, Wearable plantar pressure, 
Gait disorder, Weak foot, Machine learning

Introduction
Sensor-based technologies [1, 2] have shown the poten-
tial in screening fall risk factors and assess fall risk due to 
their objectivity, low cost, and ability to capture various 
human gait and posture signals [3]. Among existing stud-
ies (Supplementary Table. sI), accelerometers and inertial 
measurement units (IMUs) are the most common SRFT 
technology used in fall prediction (FP) [4, 5] and fall risk 
assessment [6–8]. Analyzing multi-domain acceleration 
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data enables the detection of abnormal behaviors within 
a very short response time [4]. Howcroft et al. [9] found 
that a single accelerometer outperformed a pressure sen-
sor in fall prediction tasks with the same sample length. 
Nevertheless, plantar pressure data remain valuable for 
addressing balance-related problems [10–14], locomotive 
stability [15–17], Parkinson’s disease (PD) [18–21] and 
other conditions [22, 23]. These technologies still hold 
great promise for long-term, low-obtrusive [3] fall risk 
monitoring, particularly when integrated into insoles or 
shoes [24–26]. The high-precision IMU, positioned near 
the center of mass [27], may interfere with the wearer’s 
daily activities, even when it is securely attached to the 
body with an elastic band for optimal comfort [6].

Although significant result has been achieved based 
on pressure pads with machine learning [28], the 
research on wearable shoe systems remains limited. In 
our previous work [25], the model based on wearable 
plantar pressure initially possessed the strong potential 
for long-term fall risk assessment with 87.5% accuracy. 
To further enhance the model’s robustness and reliabil-
ity across various scenarios and datasets, it is essential 
to analyze and discuss the factors contributing to the 
misclassification of certain individuals. This approach 
enables us to refine the model in a purposeful and inter-
pretable manner, rather than simply focusing on engi-
neering optimization. Moreover, there is a considerable 
variation in sample length among plantar-pressure-
based works [18–23] (ranging from 0.5 to 5 min or 20 to 
180 steps), as shown in the grey area in Table s1. Given 
the limited actual usage and the physical limitations 
of the elderly, it is essential to investigate how sample 
length impacts features and model performance.

To solve the problem, we chose a bottom-up, phenom-
enon-driven way to refine the model for fall risk assess-
ment [25]. We proposed an adaptive threshold method 
and embedded it into a two-stage model. Several experi-
ments were conducted on the proposed model’s effec-
tiveness, robustness, interpretability, and compatibility. 
Compared to our previous work [25], the contributions 
can be summarized as follows:

In addition to discriminating weak foot side as done 
in [25], we found variability in the performance of 
some individuals in weak foot features across distinct 
sample lengths.
Based on the findings, we proposed an adaptive 
threshold method based on full-connection Euclid-
ean distance of feature vectors to distinguish reces-
sive weak foot (RWF) individuals, characterized by 
the discontinuous high-risk gait on the weak foot 
side.

Two-stage model utilizing the adaptive threshold 
method outperformed the baseline model [25] by 
effectively accommodating individual differences 
in gait patterns. The threshold method served as an 
effective tool for quality control, helping to reduce 
misdiagnosis.

The paper is organized as follows. The data and fea-
tures used in the subsequent section are introduced in 
Section II. The theoretical basis of the adaptive thresh-
old method, structure, and implementation details of the 
two-stage model is described in Section III. Experiments 
and their results are detailed in Section IV. The results 
are discussed in Section V before the conclusion of Sec-
tion VI.

Data collection and processing
A. Protocol and datasets
The details of the four datasets used in this study are pre-
sented in Table 1. In addition to the existing dataset I [29] 
for fall risk assessment, we established additional dataset 
II using the same protocol as dataset I to further evalu-
ate the method’s robustness. In dataset II, a convenience 
sample of 32 older adults was recruited from the inpa-
tients in the Rehabilitation Department of First Affiliated 
Hospital of Jinan University, with the age of 65 years or 
older, who can walk for over two minutes independently. 
The First Affiliated Hospital of Jinan University approved 
all the experimental procedures in this study (KY-2020–
087) on Dec 24, 2020, and all the subjects read and signed 
the informed consent.

Before data collection, the Berg balance scale (BBS) test 
was performed on each participant. Participants were 
identified as high risk (HR) of fall if their BBS scores were 
less than 40 [30], and the rest of them were identified 

Table 1  Information of datasets

PD Parkinson’s disease

Subjects Gender (M/F) Age (years) BMI (Kg/m2)

dataset i for fall risk assessment (Hu et al. [29])

 24 Low fall risk 10/14 72.3 ± 6.0 23.5 ± 2.9

 24 High fall risk 15/9 75.9 ± 6.9 23.5 ± 2.8

Dataset II for fall risk assessment (This study)

 16 Low fall risk 9/7 71.8 ± 5.3 21.7 ± 3.3

 16 High fall risk 12/4 75.4 ± 7.1 22.3 ± 4.1

Dataset III for PD (Yogev et al. [31])

 18 Controls 10/8 71.6 ± 6.7 25.9 ± 5.1

 29 PD patients 20/9 71.1 ± 8.1 25.9 ± 3.7

Dataset IV for PD (Frenkel-Toledo et al. [32])

 29 Controls 18/11 57.9 ± 7.0 26.1 ± 3.7

 35 PD patients 22/13 61.6 ± 8.9 25.2 ± 4.2
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as low risk (LR) of fall. A prepared intelligent footwear 
system [24] with 16 pressure sensors distributed in dif-
ferent positions of the sensing insole was used to collect 
the plantar pressure of each foot. The participants were 
asked to walk for at least two minutes consecutively with 
their normal gait and speed in the 20-m-long corridor.

To assess proposed method’s scalability in other gait-
related tasks, we conducted additional experiments on 
two plantar pressure-based Parkinson’s Disease (PD) 
datasets from PhysioNet [31, 32]. As shown in Table  1, 
gender, age, and BMI between the two groups was no 
significant difference (p > 0.05) as evaluated by the chi-
square test and t-test.

B. Data split and augmentation
To reduce the impact of gait start-up while retaining 
valuable data, the first two steps of each subject were 
discarded [33]. The data was split and augmented by a 
step-level sliding window-based approach (Fig. 1). Firstly, 
to obtain the various sample lengths of different steps, 
data was split using different window lengths (20–180 
steps) by identifying the zero value of foot plantar pres-
sure. Specifically, sequential analysis and feature extrac-
tion are feasible in each window type due to time order 
and data continuity. Secondly, the window of length L 
slides forward by a fixed stride of s = 10 to create the next 
window until all sample points were included. As a result, 
the data from each subject can be divided into N samples 
using multiple windows The value of N can be calculated 
using Eq. (1):

where S represents the total number of steps.

C. Weak foot and its definition
In previous study [25], the concept of “weak foot”, refer-
ring one foot side that is functionally weak and has par-
tially lost gait integrity, was introduced to enhance the 
predictive value of the extracted data variables while 
reducing the dependence of predictive models on extrac-
tion sides. Since the weaker foot side varies among 

(1)N = (S − L)/s + 1

individuals, features derived from distinct weaker sides 
are likely to carry more predictive value than those 
extracted from a fixed side [25], thereby accounting for 
individual differences.

We calculated sequence coordinates (XW, YW) of 
Center-of-pressure (COP) across the entire window from 
the weak foot using Eq. (2), where n is the number of the 
pressure sensor, Fi and (Xi, Yi) refer to the pressure value 
and relative coordinates of each sensor, and Stdy repre-
sents the standard deviation of COP in the anterior–pos-
terior direction across.

D. Feature sets
Forty-four COP features [25] based on weak foot 
extracted were:

Weak and single foot features: Stdx (Standard devia-
tion in medial–lateral COP), Meanx (Mean in 
medial–lateral COP), Stdy (Standard deviation in 
anterior–posterior COP), Meany (Mean in anterior–
posterior COP), MRD (Mean of resultant distance), 
SRD (Standard deviation of resultant distance), 
TOTEX (Total excursions), and CCA (Confidence 
circle area).
Symmetry-based features: GAs (Gait asymmetry), 
SIM (Similarity), and JSD (JS-divergence).
Temporal consistency-based features: GICs (Gait 
inconsistency), SSIM (Sequential similarity), and 
SJSD (Sequential JS-divergence).
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Fig. 1  Data split and augmentation using step-level sliding window-based approach. L represents sample length
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Methods
E. Recessive weak foot individual
In this section, we determined the optimal sample length 
and investigated the factors contributing to misclassifi-
cation of certain individuals through a pilot Leave-one-
subject-out (LOSO) study. We identified and defined the 
recessive weak foot (RWF) individual, characterized by 
the discontinuous high-risk gait on the weak foot side. 
Drawing inspiration from the characteristics of RWF 
condition, we proposed an adaptive threshold method 
and a two-stage model.

Theoretical basis To investigate the impact of sam-
ple lengths and examine the causes of erroneous indi-
vidual classification, we conducted a pilot LOSO study 
using Dataset I. The goal was to ensure that the fall 
risk assessment model utilizes as few gait samples as 
possible for accurate and timely testing of elderly indi-
viduals with limited data. Consequently, we employed 
a sliding window-based approach, resulting in repeated 
model selection and training with various LOSO train-
ing sets across different sample lengths (17 × 48 times), 
as illustrated in Fig.  2. Supplementary Fig. s2 shows 
that we conducted feature selection across 48 LOSO 
training sets and 17 different sample lengths, resulting 
in 816 optimal feature subsets. By observing the num-
ber of times different feature types were selected, we 
could understand the varying performance of features 
under different sample lengths. Finally, the optimal 
sample lengths were determined to be 180 or 130 steps 
(right side, Fig. 2). Due to the use of a sliding window-
based approach, label inaccuracies arise from the fact 
that continuous samples from the same individual 
share the identical label. Consequently, as the sam-
ple length increases, the sample labels become more 
representative of the true risk levels, leading to the 
smallest label discrepancies and optimal model perfor-
mance in the sample length of 180 steps. Two types of 

features presented opposite trends during the feature 
selection, achieving a balance near the second opti-
mal lengths 130 steps (Supplementary Fig. s3). As the 
sample length increased, the temporal consistency-
based feature obtained a broader range of calculations, 
making them more likely to be retained in the feature 
selection. Conversely, an unexpected phenomenon was 
observed: weak foot features tended to be filtered out 
more frequently at higher sample lengths.

As seen in Fig. 3, a contribution-based case analysis 
was conducted to elucidate the unexpected phenom-
enon. Here, "contribution" refers to the influence of 
a sample on the model’s generalization performance, 
which can be either positive or negative, depending 
on the sample’s relative position within the feature 
space. Cases that contribute positively tend to cluster 
in adjacent areas, facilitating the construction of deci-
sion boundaries. In contrast, focusing on cases (with 
negative contributions) that are independent of the 
distribution of similar cases can lead to increased risk 
of overfitting. The degree of contribution depended 
on the number of cases. We defined and analyzed 
three cases of weak foot feature spaces under varying 
sample lengths to illustrate these dynamics. Based on 
previous study [25] and model dependency on fea-
ture numbers (Supplementary Fig. s1), we selected 
five weak foot features with the highest frequency of 
selection (Supplementary Fig. s2) from the pilot study 
to construct feature space via the t-SNE method [34]., 
Case 1 accounted for the largest proportion in feature 
space and made a significant positive contribution. In 
contrast, case 2 represented the smallest proportion 
and had a negative contribution, as they went deep 
into the area of another group. Importantly, the dis-
tributions of these two cases across different sample 
lengths were consistent and concentrated (red and 
purple areas), suggesting that they do not account for 

Fig. 2  Overview results in the pilot study. The optimal sample lengths were determined to be 180 or 130 steps. LOSO leave-one-subject-out
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the observed variability in weak foot feature perfor-
mance across different sample lengths.

The samples in Case 3 (grey areas) were dispersed 
across both HR (green) and LR areas (blue) at low 
sample lengths. Their contribution to the model’s gen-
eralization performance depended on whether they 
clustered in areas with the same or opposite labels. 
Consequently, their effects often offset each other, 
resulting in a negligible overall contribution in low 
sample lengths. However, at higher sample lengths, 
these subject-level cases tended to occupy the border 
region between the two groups, increasing the likeli-
hood of misclassification, particularly when treated as 
an independent unseen test set. Overall, weak foot fea-
tures contribute more to model’ s robustness at lower 
sample length, as illustrated by the summed contribu-
tions of the three cases in Fig. 3(b), which explains the 
unexpected phenomenon of variability in weak foot 
feature performance.

Recessive weak foot individual Case 3 refers to indi-
viduals whose samples exhibit variability in the weak 
foot feature space, indicating inconsistencies in the gait 
of their weaker side. Those exhibiting this phenomenon 
were defined as “RWF individuals” due to the incomplete 
manifestation of high-risk gait characteristics on the 
weak foot side. In contrast, “Dominant weak foot (DWF) 
individuals” show relatively consistent weak foot perfor-
mance, whether low-risk or high-risk.

F. Adaptive threshold method
To mitigate the negative impact of RWF individuals to 
weak foot feature space, we aimed to propose a method 
for identifying RWF individuals. Based on the discontin-
uous characteristics of RWF individuals, we introduced 
a Distribution Difference Index (DDI) to quantify the 
degree of sample aggregation and dispersion at low sam-
ple length (L), serving as the reference for distinguishing 

RWF individuals. The DDI starts by calculating the high-
dimensional Euclidean distance between each sample. 
Here, v represents the five-dimensional weak foot feature 
vectors mentioned in Section III. A. The full-connection 
distance d was calculated by averaging the distances 
between all feature vectors v. For RWF individuals, this 
distance d tends to be elevated at low L. Mathematically, 
the full-connection distance in a specific L, denoted as dL, 
is given by:

where N represents the number of samples and can be 
deduced by the Eq. (1).

Due to individual differences, the gait variation among 
participants can differ significantly, leading to impre-
cision when comparing the full-connection distances 
between individuals. The samples at higher sample 
lengths were less affected by the RWF phenomenon. 
Hence, in the DDI calculation, the full-connection dis-
tance at high L, denoted as dh, is utilized as a baseline to 
eliminate individual differences at low L. Consequently, 
DDI is defined as:

where the value dl was calculated at the smallest sample 
length to minimize excessive deviation between samples. 
In subsequent experiments, dl was set to d20 as a com-
promise. The dh was set according to the actual L of the 
dataset.

The discontinuous high-risk gait characteristics of 
RWF individuals result in higher DDI values. Driven 
inspiration from this principle, the DDI serves as a refer-
ence for distinguishing RWF individuals from DWF indi-
viduals through an adaptive threshold defined by:

(3)dL =
1

∑

(N − 1)

∑

i �=j

∥

∥vi − vj
∥

∥

(4)DDI = dl/dh

(5)T = DDImin + (DDImax − DDImin)α

Fig. 3  Contribution-based case analysis. a Three types of cases in weak foot feature space using t-SNE across different sample lengths (20, 110, 
and 180 steps). b Contribution of cases. “Contribution” refers to the influence of a sample on the model’s generalization performance, which can be 
either positive or negative, depending on the sample’s relative position within the feature space. ± Δ*: Small contribution. + : Positive contribution. −: 
Negative contribution. The number of signs represents the degree of contribution, which depends on the corresponding number of cases. HR High 
risk of fall, LR Low risk of fall
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where DDImax and DDImin represent the maximum and 
minimum values of DDI in the training set, respec-
tively, and α is a trainable parameter ranging from 0 to 
1. Once the value of α is determined, individuals with a 
DDI greater than the threshold T are identified as RWF 
individuals. Importantly, DDImax and DDImin can be sub-
stituted with the upper and lower boundaries of outliers 
to ensure that α is adjusted within a normal range (e.g., 
DDImax, min = μ ± 3σ, where μ and σ are the mean and 
standard deviation of DDI). The adaptive nature of this 
method is reflected in its trainable parameter α, enabling 
it to adapt to different tasks and datasets.

G. Two‑stage model and implementation details
As shown in Fig. 4, we proposed a two-stage model that 
incorporated the adaptive threshold method. In the 
first stage, the adaptive threshold method distinguishes 
between two types of individuals. In the second stage, 
individual-specific models are trained for each type. 
The parameter α functions as a model parameter. When 
applying the adaptive threshold method to new data or 
new task, it is essential to retrain the two-stage model to 
ensure generalization.

As illustrated in Step 1 of Fig. 4, the optimal parameter 
α and feature sets for the two individual-specific mod-
els were initially selected based on the overall accuracy 
of the two-stage model in the training. Feature selection 
had three phases [25], namely pre-selecting based on 
Student’s t-test, multi-method selection (including five 
filter methods, four wrapper methods, and two embed-
ded methods), and final selection. We fixed the stage-two 
classifiers with default hyperparameters in scikit-learn 
library [35] during step 1. Then the classifiers and param-
eters of the two models were selected and tuned in step 
2. Seven candidate machine learning classifiers Logis-
tic regression (LR), support vector machine (SVM), 

k-Nearest neighbor (KNN), decision tree (DT), random 
forest (RF), gradient boosting decision tree (GBDT), and 
AdaBoost were employed as candidates through scikit-
learn implementation [35]. Two hyperparameters were 
tuned for each classifier, including misclassification cost 
and maximum iterations for LR, number of neighbors 
and leaf size for KNN, misclassification cost and gamma 
for SVM, maximum depth and minimum samples per 
leaf for DT and RF, and number of estimators and learn-
ing rate for GBDT and AdaBoost. The test set was unseen 
until it was used to evaluate the final two-stage model in 
step 3, preventing falsely inflated accuracy. Two evalua-
tion metrics, accuracy and F1-score, can be calculated by:

where TP, TN, FP, and FN represent True positive, True 
negative, False positive, and False negative, respectively.

Results
I. Method feasibility
To investigate whether the DDI-based threshold method 
can effectively identify the individuals unsuitable for the 
model, we divided the subjects into two groups based on 
the results of the pilot study (Fig.  2). Test subjects with 
an average accuracy exceeding 50% were classified as the 
high accuracy group (HA, n = 32), while those with an 
average accuracy below 50% were classified as the low 
accuracy group (LA, n = 16). It is important to note that 
this classification is distinct from the earlier references to 
high-risk and low-risk categories for falls. We performed 
Student’s t-test on DDI values to evaluate these two 
groups’ differences. We employed the LOSO method on 
dataset I to evaluate the proposed two-stage model. A fall 

(6)Accuracy = (TP + TN )/(TP + TN + FP + FN )

(7)F1− score = 2TP/(2TP + FP + FN )

Fig. 4  Architecture and implementation of the two-stage model. Step 1: Threshold setting and feature selection within the training set; Step 2: 
Classifier selection and hyperparameter tuning within the training set; Step 3: Model evaluation within the test set. RWF Recessive weak foot; DWF: 
Dominant weak foot
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risk assessment model [25] with weak foot features was 
used as a baseline. We set sample length L to 180 steps, 
consistent with the baseline. To prevent the number of 
samples for RWF and DWF individuals from being too 
small, thereby risking overfitting in the second stage, we 
fixed the appropriate range of parameter α to 0.14–0.4 
with an interval of 0.02.

Adaptive threshold method The feature spaces of high 
DDI individuals using the top 5 features in the pilot study 
(see Fig. s2) are shown in Fig. 5a. Due to the varying per-
formance of weak foot features, there is noticeable dis-
persion of sample points among high DDI individuals at 
low sample lengths. As shown in Fig. 5b, the mean DDI of 
the LA group is significantly greater than that of the HA 
group (p < 0.05). Figure  6 shows the decision function, 
which denotes the signed distance between the sample 
and the hyperplane, thereby measuring the confidence 
score of the prediction. Individuals with high DDI values 
tended to cluster around the decision boundary, suggest-
ing that they may belong to the LA group and could be 
misclassified by model. The adaptive threshold method 
can effectively identify RWF individuals by adjusting α 
values. As demonstrated in Fig. 5 (c), the accuracy of the 
DDI-based method with α = 0.3 reached 77%, indicating 
its efficacy in screening out the majority of RWF individ-
uals from the LA group.

Two-stage model After the 48 iterations of LOSO 
training, nine test individuals were identified as RWF 
individuals across different LOSO iterations. During 
this process, a smaller parameter α resulted in a greater 
number of individuals being classified as RWF (left side, 
Fig. 6). Figure 7 (a) shows that the maximum value for the 
optimal parameter α reached only 0.36. while the lower 
limit of 0.14 was achieved in eight instances. Notably, 
when α was set to 0.14 in Fig. 6, over 60% of individuals 
were identified as RWF.

The fine adaptation of the baseline model for differ-
ent individuals was mainly reflected in the training of 
individual-specific model and the adjustment of the opti-
mal feature set. Taking the SVM classifier as an example 
(right side, Fig. 6), it established the optimal hyperplane 
based on the training samples from specific individuals. 
For the feature set adjustment shown in Fig. 7 (b), there 
were more significant changes in the number of selected 
feature types for DWF individuals, while RWF individu-
als exhibited relatively minor changes compared to the 
baseline. This limited variation for RWF individuals 
may be attributed to the training sample size. As shown 
in Fig.  8, the two-stage model achieved an accuracy of 
85.4% with a sensitivity of 87.5%, compared to the 81.2% 

Fig. 5  Performance of DDI and adaptive threshold method. a t-SNE 
visualization of the feature space for individual with high DDI. b DDI 
between LA and HA groups, with significant difference indicated 
by *. c Confusion matrix illustrating the effectiveness of the adaptive 
threshold method in distinguishing between LA and HA. DDI 
Distribution difference index, HA High accuracy group, LA Low 
accuracy group, RWF Recessive weak foot, DWF Dominant weak foot

Fig. 6  Analysis of adaptive threshold method. The size of the legends 
in the feature space represents the value of the DDI. The SVM 
classifiers with default hyperparameters along with the top five 
features selected in the pilot study were employed to generate 
feature space and decision function. Classifiers and features 
need to be reselected throughout the actual developing 
of the individual-specific model. RWF: Recessive weak foot; DWF: 
Dominant weak foot; DDI: Distribution Difference Index
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baseline accuracy. This improvement was largely attrib-
uted to the enhanced training set that excluded RWF 
individuals, allowing for better training of the DWF 
model, which reached an accuracy of 89.7%. Inadequate 
training of the RWF model might lead to overfitting and 
a significantly lower accuracy of 66.7%.

J. Ablation studies
The introduction of the adaptive threshold method in the 
first stage, along with the individual-specific models in 
the second stage, complicates the understanding of the 
model’s mechanisms and the sources of improvement. 
Since the pilot study and feasibility analysis were on data-
set I, ablation studies were also performed on an addi-
tional dataset II using the LOSO method to investigate 
the method’s behavior and evaluate the generalization 
performance without information leakage. To ameliorate 
the potential overfitting when developing the two-stage 
model on a small dataset (32 subjects), we adopted the 
second-best sample length of 130 steps for data augmen-
tation. The sliding window-based approach enhanced the 

dataset sixfold (calculated by Eq. (1)), thereby increasing 
the resolution of evaluation metrics. This allows for more 
nuanced comparison across studies.

With data enhancement, the individual-specific 
models were fully trained even on the small dataset 
II, achieving accuracies of 82.1% and 85.5% on data-
set I and accuracies of 87.5% and 79.2% on dataset II 
(top, Table  2). Despite label errors, the overall accu-
racy of 84.4% was slightly lower than the two-stage 
model under 180 steps. The F1-score, which empha-
sizes true positive cases and is more sensitive to recall, 
also highlights the improvements of the two-stage 
model over the one-stage model, with enhancements 
exceeding 10% on both datasets (top, Table 2), demon-
strating the effectiveness and robustness of our adap-
tive threshold method. We conducted several ablation 
studies to interpret the improvements. The results of 
these two models served as baselines for the following 
comparison.

First, we examined the impact of stage-two adaptation 
on individual-specific models. To do this, we stopped the 

Fig. 7  Results of the two-stage model development. a Density plot of selected parameter α among all LOSO iterations. b Adjustment 
of the optimal feature set from the baseline model. The arrow indicates the degree of increase or decrease compared to the one-stage baseline 
model. RWF Recessive weak foot, DWF Dominant weak foot

Fig. 8  Confusion matrix on LOSO test set of dataset I. RWF Recessive weak foot, DWF Dominant weak foot
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developing process of the stage-two models and used the 
default features and classifiers selected in the one-stage 
baseline model instead. This deactivation led to varying 
degrees of decline in overall accuracy, dropping to 70.0% 
on both datasets when using the default model for both 
individual types. Given that this scenario is essentially 
akin to the one-stage model, the results were expected 
to be slightly lower than 72.9% on Dataset I and equal to 
67.7% on Dataset II.

Next, we separately analyzed the roles of two key ele-
ments in the threshold method: the reference value and 
the threshold. We assessed the method’s performance 
while eliminating one or both elements. For this pur-
pose, we took the random number as the reference value, 
averaged over ten iterations, or preset the threshold to 
equally divide individuals. Masking the effect of the ref-
erence value (Random + α, Table  2) resulted in a 10% 
accuracy drop on dataset I compared to the two-stage 
baseline, with even poorer results on Dataset II than the 
one-stage baseline. In contrast, the model’s performance 
improved when masking the effect of the adaptive thresh-
old (DDI + Equal, Table 2). The worst outcomes occurred 
when both elements were masked, yielding 61.5% accu-
racy and 61.1% F1-score on Dataset I, and 50% accuracy 
and 41.2% F1-score on Dataset II. This highlights that 
the adaptive threshold, without either of the two key ele-
ments, is insufficient to effectively partition the appropri-
ate and reasonable training set for the individual-specific 
model.

K. Method compatibility
The adaptive threshold method cannot be used as a 
plug-and-play method, as DDI calculation is specifically 
limited to plantar pressure data. The RWF condition, 

representing an incomplete expression of gait integrity 
loss, may impact the results of other gait-related studies. 
To preliminarily explore the broader applicability of our 
method, we tested its compatibility with PD, a common 
balance-related [36] and fall-risk-related [37] disease. 
Alam et al. [19] developed various machine learning clas-
sifiers to distinguish PD patients from healthy controls, 
which we utilized as a baseline model for comparison. 
Their work did not divide the extra test set for evaluation, 
which may lead to inflated results [2]. To address this, 
in addition to dataset III for model selection, dataset IV 
was adopted as an external test set to evaluate the gener-
alization performance. We conducted two reproduction 
procedures: Re 1, where we used ten selected features in 
the work [19]; Re 2, which involved using only the raw 
feature set along the feature selection method from their 
work [19], followed by reselection of optimal features.

Table  3 (top) shows the reproduction results of the 
baseline and our two-stage model on the training set. The 
optimal models from the training set were then tested 
on the external test set. As seen in Table 3 (bottom), the 
performances on the test set were generally poorer than 
those on the training set, indicating limited robustness 
of the model. However, by discriminating between dif-
ferent individual types and optimizing the training set in 
advance, we improved the model’s robustness, increasing 
accuracy from 67.2% to approximately 71%.

Discussion
In this study, we identified a gait pattern “Recessive weak 
foot,” (RWF) characterized by a discontinuous high-
risk gait on the weak foot side, observed through weak 
foot feature space. Individuals exhibiting this incom-
plete manifestation are defined as “RWF individual,” 

Table 2  Results of ablation studies

The red and green dotted lines represent the baseline of the one-stage and two-stage models.: Random: We took the random number as the reference value, 
averaged over ten iterations. Equal: We preset the threshold to equally divide individuals. Redevelop: The individual-specific model was redeveloped with new 
features, classifiers, and parameters based on the training set. Default: The developed one-stage baseline model was used. DDI Distribution Difference Index; RWF 
Recessive weak foot; DWF Dominant weak foot; Acc Accuracy
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This condition negatively impacts the training and per-
formance of common fall risk assessment model [25]. 
Hence, based on its pattern, we could propose a thresh-
old method to identify those individuals to enhance the 
overall performance of the model.

Three existing interpretations, which are not mutu-
ally exclusive, may provide insights into implications of 
incomplete manifestation and help us understand poten-
tial reasons for model improvement: 1) Transition state: 
Liu et al. [38] considered samples located at the bound-
ary between ill and normal areas as representing a tran-
sition state from illness to full recovery. This perspective 
suggests that relying solely on two risk levels in fall risk 
assessments is overly simplistic. The RWF condition pro-
vides a new avenue for exploration, particularly if the 
discontinuous gait also exists within this transition state. 
If this is indeed the case, it should be classified as a dis-
tinct category with significant characteristics, warrant-
ing further investigation. 2) Dual-task interference (DTI) 
[39]: Numerous studies [20, 40, 41] have shown that bal-
anced or normal gait can occur in stroke patients during 
single-task experiments, with gait degradation typically 
manifesting only under dual-task conditions [39], such 
as motor-cognitive training. Normal gait relies on a pre-
cise coordination among various interacting neuronal 
systems [42]. When the automatic control provided by 
central pattern generators [43] is compromised by dis-
ease or injury, additional cognitive input can compensate 
for it, preventing abnormal gait from emerging under low 
cognitive load [41]. This theory suggests that some RWF 
states may involve cognitive compensation. Future study 
could investigate the performance of RWF individuals 
under dual-task conditions. Given the challenges posed 
by RWF individuals to the existing model, we should 

reconsider the incorporation of additional cognitive tasks 
into fall risk assessments during daily walking to enhance 
assessment accuracy. 3) Episodic gait disorders [42]: A 
notable characteristic of certain gait disturbances is their 
fluctuating or episodic nature, where specific provoking 
factors can differentiate these disturbances. The sudden 
and largely unpredictable changes in gait can manifest 
as loss of gait integrity across different episodes, closely 
consistent with the RWF condition. The RWF condition 
may serve as a significant indicator of episodic gait disor-
der in future studies.

In the feasibility study, we examined the effectiveness 
of DDI values, serving as a reference for identifying indi-
viduals unsuitable for classification based on weak foot 
features and validated the effectiveness of the DDI-based 
threshold method. As shown in Fig. 5, part of individuals 
unsuitable for the model could be effectively screened out 
by reference to DDI as the RWF phenomenon is generally 
associated with higher DDI values. The models tend to 
perform poorly with RWF individuals, while the low DDI 
in the LA group indicate that those individuals are often 
easily classified, typically exhibiting clear signs of their 
risk levels on the weak side. However, a few individuals 
with small DDI values remain in the LA group, primarily 
stemming from case 2 (Fig. 3). Due to their lack of appar-
ent characteristics and absence of pathological basis for 
treating them as outliers, it is unproductive to attempt to 
improve the model using these cases. While individuals 
with high accuracy may be misidentified as RWF indi-
viduals (Fig. 5 (c)), there remains a significant likelihood 
of correctly classifying them in the second stage of clas-
sification. We only verified the feasibility of the adaptive 
threshold method since the above discussion shared the 
same dataset with the pilot study. Consequently, in the 

Table 3  Results of method compatibility

We conducted two reproduction procedures: Re 1, where we used ten selected features in the work [19]; Re 2, which involved using only the raw feature set along the 
feature selection method from their work [19], followed by reselection of optimal features. aThe number of corresponding individual types. RWF, Recessive weak foot; 
DWF, Dominant weak foot

Classifier Alam 2017 [19] Re 1 Re 2 Two-stage + Re 1 Two-stage + Re 2

RWF model DWF model RWF model DWF model

Accuracy (%) on the training set (Dataset III)

SVM 95.7 91.7 85.4 86.7 87.9 93.3 90.9

KNN 85.1 81.3 81.3 86.7 84.8 86.7 87.9

DT 87.2 85.4 83.3 86.7 81.8 93.3 81.8

RF 89.4 85.4 89.6 86.7 84.8 86.7 84.8

GBDT – 85.4 85.4 66.7 81.8 66.7 84.8

AdaBoost – 83.3 87.5 80.0 87.9 93.3 87.9

Accuracy (%) on the test set (Dataset IV)

Selected model – 67.2 67.2 83.3 (40)a 50.0 (24)a 72.0 (25)a 71.8 (39)a

70.8 71.9



Page 11 of 13Song et al. Journal of NeuroEngineering and Rehabilitation           (2025) 22:64 	

ablation experiment, we further tested the validity of the 
threshold method on a new dataset.

In the LOSO experiment, we observed that the adap-
tation of the baseline model for specific individuals 
improved the accuracy significantly. The high accuracy 
and sensitivity of our two-stage model is particularly 
important for early-stage screening of high fall risk, as 
it helps prevent missed diagnoses. This improvement 
was primarily attributed to the training of individual-
specific models and the adjustment of the optimal fea-
ture set. During the training process, the DWF model 
was assigned fewer training samples, which was reflected 
in a tendency to select a lower threshold and utilize a 
larger training set for RWF model (Fig.  6 and Fig.  7a). 
This trend indicated that, after removing certain atypi-
cal individuals, the data characteristics of DWF individu-
als became easier for the model to learn. Conversely, the 
RWF model required more extensive training to capture 
the more variable data distribution of RWF individu-
als. The adaptation process from a general to a specific 
was not effectively realized in the RWF case. Inadequate 
training hindered the RWF model’s ability to learn the 
unique characteristics of these individuals, resulting 
in feature selection that closely resembled the baseline 
model (Fig.  7b) and demonstrating poor predictive per-
formance (Fig. 8). As a result, we implemented data aug-
mentation in subsequent ablation studies. Additionally, 
in practical applications, a small number of RWF indi-
viduals could be regarded as outliers and manually diag-
nosed by medical personnel to enhance overall accuracy. 
Hence, the adaptive threshold could serve as an effective 
tool for quality control prior formal assessment, helping 
to reduce misdiagnosis, and optimize the use of medical 
resources.

In the ablation study, we demonstrated that each com-
ponent of our model is essential for achieving improve-
ment. The rules and theories derived from the pilot study 
are generalizable and not limited to Dataset I. When we 
halted the development, the accuracy of the undeveloped 
RWF model significantly dropped to 53.8% and 40.0% 
(Default + Redevelop, Table 2). This decline can be attrib-
uted to the model’s lack of fine adaptation to individual 
characteristics, which is a crucial process in our two-
stage model. In contrast, the accuracy of the undevel-
oped DWF model showed only a marginal deterioration 
of nearly 5%. This deterioration likely results from the 
inherent characteristics of DWF individuals being easier 
to learn and fit well even with a common model. The 
adaptive threshold method plays an important role in 
individual discrimination and quality control. Although a 
fixed threshold did not enhance the method’s robustness, 
the DDI still provided valuable insights for distinguishing 
individuals who were more likely to be RWF. Ultimately, 

guided by the DDI and dynamic adjustments to the 
threshold, the adaptive threshold method effectively clas-
sifies individuals for different models. This tailored 
approach improves model generalization by allowing the 
model to account for individual differences in gait pat-
terns, leading to more accurate predictions and reducing 
the risk of misclassification.

We preliminarily assessed the compatibility of our 
method using PD datasets. The biased raw feature set 
from [19] lacked consideration of spatial symmetry and 
temporal changes, easily resulting in overfitting. Addi-
tionally, ten of the thirteen features were selected as the 
final feature set, resulting in significant overlap among 
different candidate feature sets. Overfitting occurs when 
the model excessively learns the unique characteristics of 
specific individuals. By effectively discriminating between 
different individual types and optimizing the training set 
in advance, our two-stage model performed better. How-
ever, due to the low dimensionality of the raw feature set, 
the individual-specific model could not be finely tuned, 
which limited the extent of this improvement.

The adaptive threshold method cannot currently be 
implemented as a plug-and-play solution, as the DDI cal-
culation is limited to plantar pressure data. It is essential 
to expand its applicability. Assuming that recessive RWF 
conditions may stem from impairments in the central 
pattern generator, gait disorders associated with neuro-
logical diseases [42] such as PD, stroke, Multiple Sclerosis 
and Spinal Cord Injury should be prioritized for further 
investigation. Subsequent studies could then explore 
other balance-related tasks, including scoliosis and knee 
osteoarthritis classification. Moreover, the method must 
be adaptable to a broader range of data types. To validate 
its transferability and scalability, we propose collecting 
various biological signals simultaneously, allowing us to 
explore and characterize the signal patterns associated 
with RWF individuals more comprehensively. Addition-
ally, we intend to enhance the validation of our method’s 
generalization by employing multi-center and cross-data-
set analyses.

Conclusion
This study defined individuals with the RWF gait pat-
tern by analyzing weak foot feature space, proposing an 
adaptive threshold method to effectively discriminate 
RWF individuals. Embedded within a two-stage fall risk 
assessment model, this method was validated through 
feasibility and ablation studies on two self-established 
datasets and assessed for compatibility with two pub-
lished gait-related PD datasets. Guided by DDI and 
optimized adaptive thresholds, our approach success-
fully screened RWF individuals, achieving accuracies 
of 87.5% and 73.6% on an enhanced dataset. Compared 
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to the baseline, the two-stage model improved perfor-
mance, demonstrating an accuracy of 85.4% and sen-
sitivity of 87.5%. Additionally, in the PD dataset, our 
method reduced overfitting associated with low fea-
ture dimensions, increasing accuracy by 4.7%. These 
findings indicate that the proposed method enhances 
model generalization by accommodating individual gait 
differences, serving as a robust tool for quality control 
and reducing misdiagnosis. The identification of the 
RWF gait pattern has prompted connections to related 
studies and theories, highlighting the need for further 
research.
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