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METHODOLOGY
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disease: a method accounting for arm activities 
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Abstract 

Background Accurately measuring hypokinetic arm swing during free-living gait in Parkinson’s disease (PD) is chal-
lenging due to other concurrent arm activities. We developed a method to isolate gait segments without these arm 
activities.

Methods Wrist accelerometer and gyroscope data were collected from 25 individuals with PD and 25 age-matched 
controls while performing unscripted activities in their home environment. This was done after overnight withdrawal 
of dopaminergic medication (‘pre-medication’) and approximately one hour after intake (‘post-medication’). Using 
video annotations as ground truth, we trained and evaluated two classifiers: one for detecting gait and one for detect-
ing gait segments without other arm activities. Based on the filtered gait segments, arm swing was quantified using 
the median and 95th percentile range of motion (RoM). These arm swing parameters were evaluated in three ways: 
(1) the agreement between predicted and video-annotated gait segments without other arm activities, (2) the sensi-
tivity to differences between PD and controls, and (3) the sensitivity to the effects of dopaminergic medication.

Results On the most affected side, the mean (SD) balanced accuracy for detecting gait without other arm activi-
ties was 0.84 (0.10) pre-medication and 0.88 (0.09) post-medication. The agreement between arm swing parameters 
of predicted and video-annotated gait segments without other arm activities was high irrespective of medication 
state (intra-class correlation coefficients: median RoM: 0.99; 95th percentile RoM: 0.97). Both the median and 95th 
percentile RoM were smaller in PD pre-medication compared to controls (median: � = −18.80

◦ , 95% CI [ −30.63, −
10.60], p < 0.001; 95th percentile: � = −28.34

◦ , 95% CI [ −38.26, −18.18], p < 0.001), and smaller in pre- compared 
to post-medication (median: � = −12.31

◦ , 95% CI [ −21.35, −5.59], p < 0.001; 95th percentile: � = −19.04
◦ , 95% CI 

[ −28.48, −11.14], p < 0.001). The differences in RoM between pre- and post-medication were larger after filtering gait 
for the median (p < 0.01) and 95th percentile RoM (p = 0.01).

Conclusions Filtering out gait segments with other concurrent arm activities is feasible and increases the change 
in arm swing parameters following dopaminergic medication in free-living conditions. This approach may be used 
to monitor treatment effect and disease progression in daily life.
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Introduction
A reduced arm swing during gait is a characteristic and 
early sign of Parkinson’s disease (PD) [1]. Initially, the 
reduction in arm swing is unilateral and stronger on the 
most affected side, while often progressing to a bilateral 
and more symmetrical presentation in later stages of the 
disease [2]. This reduction in arm swing is associated 
with both hypokinesia and rigidity [3, 4]. Arm swing in 
individuals with PD typically increases after dopamin-
ergic medication intake [5]. As such, quantifying arm 
swing could provide insights into the response to medi-
cation. Also, because arm swing reduction is an early 
and progressive sign, quantifying long-term changes in 
arm swing over time could also serve to measure disease 
progression. This is particularly relevant in the context of 
clinical trials investigating disease-modifying therapies 
[6].

Currently, the assessment of arm swing reduction in 
individuals with PD relies on in-clinic observations. 
These observations are typically made by assessors while 
the individual with PD performs short walking tasks 
included in rating scales such as the Movement Disorder 
Society - Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS). However, the efficacy of in-clinic observations 
is hampered by the subjective nature of the examina-
tion—leading to observer bias [7], as well as inter- and 
intra-rater variability [8], the snapshot nature of meas-
urements [9], the use of ordinal scales that are insensitive 
to small changes [10], and the requirement to travel to a 
clinic. This limits their use for monitoring response fluc-
tuations in the context of individual patient care, and for 
evaluating new interventions such as disease modifying 
therapies in clinical trials [11]. Continuous data collec-
tion through wearable sensors could address these limita-
tions [12–14].

Objectively quantifying arm swing in individuals 
with PD has gained increasing attention over the past 
decade, initially focusing on in-clinic assessments. For 
example, in-clinic motion-capture systems have shown 
reduced arm swing amplitude, velocity, and increased 
asymmetry in individuals with PD compared to age-
matched healthy controls [5, 15–17]. Similar differences 
between PD and healthy controls have been observed 
in arm swing measures derived from wrist-worn sen-
sor data collected in the clinic [18–23]. In addition, arm 
swing measures improved after dopaminergic medica-
tion intake [5, 24] and decreased over time [23]. Subtle 
changes in arm swing measures were observed dur-
ing the prodromal phase in individuals with rapid eye 
movement sleep behavior disorder (RBD), and in non-
manifesting carriers of the LRRK2-G2019S mutation 
[25, 26]. However, in-clinic assessments are often not 

representative of how individuals with PD function in 
daily life [23, 27]. These differences can be partly attrib-
uted to environmental factors, the effects of medication 
and stress, the awareness of being monitored, and task 
complexity [28–34].

When monitoring arm swing outside the clinic, it is 
important to distinguish between active and passive 
monitoring. Active monitoring involves standardized 
tests performed at home, while passive monitoring cap-
tures data during everyday activities. In active moni-
toring, arm swing parameters have been shown to be 
sensitive to dopaminergic medication intake [33]. 
Although active monitoring can provide valuable 
insights, it remains episodic, may be affected by a per-
ceived awareness of being monitored, and relies on 
active participation from individuals, which can lead to 
declining retention rates in longitudinal studies [7, 35].

In contrast, passive monitoring offers continuous 
data collection in daily life without the drawbacks of 
active monitoring. Continuous data collected from 
wrist-worn sensors enable the detection and quanti-
fication of gait in free-living conditions [36–39]. Gait 
quality measures derived from these data have shown 
differences between individuals with PD and matched 
controls [37], and are also sensitive to the effects of 
dopaminergic medication [5, 36]. However, the het-
erogeneity of other arm activities conducted during 
free-living gait may interfere with obtaining accurate 
estimates of arm swing parameters when using wrist-
worn sensors. Examples of these arm activities during 
gait include carrying an object, resting hands in trou-
ser or jacket pockets, or making hand gestures (e.g., 
waving to a passing friend). To enable valid analysis of 
reduced arm swing in free-living conditions, methods 
are needed to detect and filter out such arm activities.

To this end, we aim to develop and validate a model 
for detecting other arm activities during gait. This 
would enable a more accurate estimation of arm swing 
parameters by focusing on gait segments free of other 
arm activities. Our approach involves an open-source 
analysis pipeline utilizing data from wrist-worn accel-
erometers and gyroscopes to (1) detect gait, (2) iden-
tify gait segments without other arm activities, and 
(3) quantify the arm swing range of motion (RoM) in 
the remaining segments. To evaluate our approach, we 
compare the predictions of steps (1) and (2) against 
ground truth video annotations from the Parkinson@
Home Validation study [40]. To assess the added value 
of isolating gait segments without other arm activities, 
we determine whether the improvement in arm swing 
RoM after dopaminergic medication intake is more 
pronounced after filtering.
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Methods
A high-level overview of the pipeline components is pro-
vided in Fig. 1. After raw data preprocessing, the pipeline 
consists of three consecutive steps: (1) gait detection, (2) 
detection of gait without other arm activities, and (3) arm 
swing quantification. We adopted a modular approach 
for gait detection and detecting other arm activities to 
allow easy replacement of individual components. The 
entire pipeline is publicly accessible and requires Python 
3.11 (see section ’Availability of data and materials’).

Dataset
The data were collected during the Parkinson@Home 
validation study, which included 25 individuals with 
PD and 25 age-matched controls [40]. This study col-
lected wearable sensor data and video recordings during 

unscripted daily life activities in the participants’ home 
environment. Relevant summary statistics of the study 
sample can be found in Table 1. Characteristics of each 
participant with PD can be found in Table  S1. For a 
detailed description we refer to the study documentation 
in the linked data repository and the original publication 
of the study [40, 41].

In brief, participants performed unscripted activities 
in and around their home for at least 1  h. Participants 
with PD did this twice: once in a practically defined OFF 
state (i.e., after an overnight withdrawal of dopaminer-
gic medication, pre-med), and once one hour after tak-
ing their regular dopaminergic medication (post-med). 
This resulted in a mean (SD) of 150 (26) minutes of data 
for the PD group and 95 (17) minutes for controls. An 
assessor conducted MDS-UPDRS clinical assessments in 

Fig. 1 Data processing pipeline. The yellow area represents the input data, the pink area denotes preprocessing, and the blue areas highlight 
the three core components of the pipeline: (1) gait detection, (2) detection of gait without other arm activities, and (3) arm swing quantification. In 
the diagram, light blue parallelograms represent data, dark blue squares represent data processing methods, and transparent diamonds represent 
data selection processes. The numbers in the parallelograms representing data indicate the mean (SD) minutes of data remaining aggregated 
across all participants with PD
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both pre-med and post-med states prior to carrying out 
unscripted activities. Inclusion criteria for the PD group 
were: (1) a diagnosis of PD by a neurologist according to 
accepted international criteria, (2) use of levodopa and/
or a dopamine agonist, (3) at least slight motor fluctua-
tions (MDS-UPDRS Part IV item 4.3 ≥ 1), and (4) at least 
some Parkinson-related gait impairments (MDS-UPDRS 
Part II item 2.12 ≥ 1 and/or item 2.13 ≥ 1). For the cur-
rent study, participants using a walking stick (n = 2) were 
excluded due to the lack of free arm swing on one side. 
We also excluded one individual with PD whose wrist-
worn sensors shifted during data collection. Most par-
ticipants with PD had mild to moderate disease severity 
(77% Hoehn & Yahr stages I and II), and no statistically 
significant differences in age and gender were found 
between the PD and control groups (age: p = 0.64; gen-
der: p = 0.89). We computed an MDS-UPDRS Part III 
subscore composed of items most closely related to 
reduced arm swing, which included all lateral bradykin-
esia and rigidity items. A list of the included scores can 
be found in Table S4.

For this study, we used triaxial accelerometer and 
gyroscope data collected during unscripted activities 

both before and after medication intake. Both sen-
sor modalities were sampled at 200 Hz using Gait Up 
Physilog 4 devices worn on both wrists of the partici-
pants. For the PD group, we present results separately 
for the most affected side (MAS) and least affected side 
(LAS), as determined by the unilateral MDS-UPDRS 
Part III pre-med subscore. In the case of equal lateral 
scores, the self-reported most affected side was used. 
When comparing PD with controls, participants were 
matched for self-reported hand dominance.

Video recordings of participants were made using a 
single hand-held video recording device with a sam-
pling rate of 20 frames per second (fps) and a resolution 
of 640 (width) by 360 (height), operated by a second 
assessor. While recording, the participant was in view 
as much as possible. However, the participant’s move-
ments between rooms resulted in a mean (SD) of 68 
(42) seconds of missing recordings across participants. 
Furthermore, to limit the effect of participants’ aware-
ness of being monitored on behavior, two assessors 
conducted the study visit: one recording the visit and 
one interacting with the participant. An exit survey 
showed that only 10% of participants felt uncomforta-
ble being filmed in their own home. Synchronized video 
recordings of the unscripted activities were annotated 
by trained research assistants following a predefined 
protocol [40]. The annotations identified the presence 
of various daily life activities (including gait, sitting, 
standing, cycling and running) as well as tremor. Gait 
was defined as any episode in which the participant 
took five or more consecutive steps, excluding walking 
the stairs and turning. To distinguish from gait, a move-
ment was annotated as turning when the feet rotated 
at least 90◦ from the heel-off of the first step until the 
foot flat of the final step. The definitions of all activi-
ties can be found in the video annotation protocol in 
the data repository [41]. Walking the stairs and turning 
were excluded because they involve additional biome-
chanical and cognitive demands, introducing variabil-
ity unrelated to hypokinesia, making it harder to isolate 
its specific effect on gait [42]. Furthermore, assessing 
steady-state gait provides insights into motor function 
during routine walking rather than specific maneuvers 
that may not be performed frequently. The prevalence 
of all annotated activities is shown in Table S2.

Subsequently, arm activities during gait were anno-
tated using the available video recordings (by E. Post). 
Annotations were made separately for the left and right 
arms. Categories of arm activities were defined concur-
rently with the annotation process to allow flexibility in 
the scheme. The start and end of each arm activity were 
marked by its initiation and finalization. Arm activity cat-
egories and statistics are presented in Table S3.

Table 1 Characteristics of Parkinson’s disease (PD) participants 
and controls included in this study

† Controls are assessed only once

Part III of the Movement Disorder Society-sponsored Unified Parkinson’s Disease 
Rating Scale (MDS-UPDRS) was split up into pre-medication (pre-med) and post-
medication (post-med) states. The subscore includes lateral MDS-UPDRS Part III 
items most closely related to reduced arm swing, calculated separately for the 
most affected side (MAS) and least affected side (LAS). Values with ± indicate 
mean ± standard deviation. The Hoehn & Yahr assessment was conducted in 
the practically defined OFF state for all participants, except for one, where it was 
determined using video footage posterior to the visit

 Characteristics Group

PD Controls

N (men) 22 (11) 24 (11)

Age 63.7 ± 6.6 63.4 ± 10.1

Years since diagnosis 6.9 ± 3.5 N/A

Hoehn & Yahr stage I 1 N/A

Hoehn & Yahr stage II 16 N/A

Hoehn & Yahr stage III 4 N/A

Hoehn & Yahr stage IV 1 N/A

MDS-UPDRS Part I 11.6 ± 5.6 3.9 ± 4.2

MDS-UPDRS Part II 10.6 ± 4.8 0.5 ± 1.2

MDS-UPDRS Part III pre-med 41.7 ± 13.1 8.9± 6.9
†

MDS-UPDRS Part III post-med 27.7 ± 11.3 8.9± 6.9
†

MDS-UPDRS Part III pre-med MAS subscore 12.5 ± 3.8 3.0± 3.4
†

MDS-UPDRS Part III pre-med LAS subscore 9.6 ± 3.5 3.9± 3.0
†

MDS-UPDRS Part III post-med MAS subscore 8.6 ± 3.4 3.0± 3.4
†

MDS-UPDRS Part III post-med LAS subscore 7.5 ± 2.7 3.9± 3.0
†

MDS-UPDRS Part IV 6.1 ± 3.0 N/A
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Raw data preprocessing
The 200 Hz triaxial accelerometer and gyroscope sig-
nals were downsampled to 100 Hz to improve pro-
cessing efficiency by decimating by a factor of 2. The 
wrist-worn sensor could be worn in two different ori-
entations. Figure S1 shows the axis directions of the 
accelerometer and gyroscope after inverting the axes 
to account for these orientations. A 4th order Butter-
worth high-pass filter with a cutoff frequency of 0.2 Hz 
was applied to each axis of the accelerometer to sepa-
rate the dynamic and gravitational components of the 
signal [43]. The extracted gravitational component was 
retained and used separately as a measure of wrist ori-
entation. Sensor data with missing video annotations, 
due to an inability to reliably determine activities, were 
discarded [mean (SD) 2.5 (2.6) mins].

Data processing pipeline
Gait detection
In this step, we included only the accelerometer sen-
sor to facilitate comparison with existing gait detection 
algorithms. A sliding Hann window of 6 s with a 5-sec-
ond overlap was applied to the time series data. The 
Fast Fourier transform (FFT) was then used to trans-
form the windowed temporal signal into the spectral 
domain. From the windowed accelerometer signal, a 
total of 34 features were extracted (see Table 2).

For each axis, features extracted included the log-
transformed power in specific frequency bands: below 
gait [0−0.7 Hz], gait [0.7−3.5 Hz], rest tremor [3.5–8 
Hz] and above rest tremor [8–25 Hz]). We added fre-
quency bands specific to tremor as we anticipated the 
rhythmic characteristic of rest tremor – similarly found 
in gait—to interfere with the classifier’s ability to cor-
rectly classify non-gait. The frequency range for gait 
was chosen to contain the fundamental frequency and 
at least the first harmonic of gait movements, while 
limiting potential overlap with the rest tremor fre-
quency band [40]. The dominant frequency, defined as 

the frequency with the highest power between 0 and 25 
Hz, was also extracted for each axis.

From the gravitational component of each axis, we 
extracted the mean and standard deviation. The gravita-
tional component represents the orientation of the wrist, 
which is expected to vary considerably between activities. 
Using the norm of the three axes of the dynamic com-
ponent, we extracted the standard deviation in the tem-
poral domain and Mel Frequency Cepstral Coefficients 
(MFCCs) in the spectral domain as measures of vari-
ability and rhythmicity. MFCCs are traditionally effec-
tive in audio analysis, but the rhythmic and repetitive 
nature of gait similarly enables MFCCs to be beneficial in 
the field of human activity recognition [44]. The MFCC 
parameters were set to capture information related to the 
harmonics of gait. A total of 12 MFCCs were extracted 
between 0 and 25 Hz using 15 filter banks.

Based on the video annotations, each window was 
labeled as either gait or non-gait using majority voting 
over the timestamps spanning the window. A complete 
list of activities and their prevalence can be found in 
Table S2. Least Absolute Shrinkage and Selector Opera-
tor (LASSO) regularized logistic regression (LR) and ran-
dom forest (RF) were used as classification models for 
gait detection. The selection of these models was made 
to include both a relatively simple model (LR) and one 
capable of capturing non-linear relationships (RF). More 
advanced, data-intensive methods, such as deep learn-
ing, were omitted due to the limited size of the data in 
this study. We used nested leave-one-subject-out cross-
validation (LOSO-CV) with grid search to find an opti-
mal set of hyperparameters that maximized balanced 
accuracy in the inner loop (hyperparameters for LR: reg-
ularization parameter and number of iterations; hyper-
parameters for RF: number of estimators and maximum 
depth). Within each fold, the PD sample of the training 
data was used to set the classification threshold, ensur-
ing a minimum specificity of 0.95 on the training set. 
This approach was adopted to limit the number of false-
positive predictions, which were expected to interfere 
with the detection of gait without other arm activities. 
For logistic regression, features were standardized within 
each fold to avoid data leakage.

A single classifier was selected based on the highest bal-
anced accuracy. For this classifier, we estimated the influ-
ence of gait segment duration and specific arm activities 
on its sensitivity. Additionally, we assessed the classifier’s 
robustness in detecting impaired gait by comparing sen-
sitivity between PD and controls, between pre-med and 
post-med, between the most and least affected sides, and 
across varying MDS-UPDRS Part III pre-med subscores. 
To account for differences in behavior, we adjusted these 
sensitivities for the prevalence of gait segment durations 

Table 2 Features used in detecting gait

Feature Axis Sensor # Features

Standard deviation temporal 
signal

Norm Accelerometer 1

Mel Frequency Cepstral Coef-
ficients

Norm Accelerometer 12

Dominant frequency Per axis Accelerometer 3

Power in frequency bands Per axis Accelerometer 12

Gravitational component accel-
eration

Per axis Accelerometer 6
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in all group comparisons, and for the prevalence of other 
arm activities in all group comparisons except PD versus 
controls. The adjusted prevalence was determined at the 
group level.

Filtering gait: detection of gait without other arm activities
Using the predicted gait segments from step 1, the next 
step was to develop a model to detect gait segments with-
out other arm activities. Examples of other arm activities 
include, but are not limited to, holding an object, gestur-
ing, and opening a door. A complete list of arm activities 
and their prevalence can be found in Table S3. We refer 
to the predicted gait segments from step 1 as unfiltered 
gait, and the subset of these segments predicted to have 
no other arm activities as filtered gait.

Using only the predicted gait segments, we applied a 
sliding Hann window of 3 s with 75% overlap to the time 
series data, followed by a Fast Fourier transform (FFT) 
to convert the windows into the spectral domain. We 
included accelerometer features similar to those used in 
the gait detection step, as well as MFCCs from the gyro-
scope signal (see Table 3 for a complete list of features).

Based on the video annotations, each window was 
labeled as “gait with other arm activities” or “gait with-
out other arm activities” using majority voting. Similar to 
the gait detection task, we evaluated a LR and RF clas-
sifier using nested LOSO-CV grid search. However, dif-
ferent from gait detection, the classification threshold for 
filtering gait was determined by optimizing for balanced 
accuracy on the training set across the PD cohort. This 
decision was made because false positives and false nega-
tives were equally undesirable in this step.

We selected a single classifier based on the highest bal-
anced accuracy and conducted an in-depth evaluation of 
its performance. This included analyzing the classifier’s 
specificity for detecting specific other arm activities and 
assessing the effect of gait segment duration on its sen-
sitivity. Additionally, we evaluated the impact of PD on 
the classifier’s sensitivity. Given that severely hypokinetic 

arm swing during gait may resemble gait with certain 
other arm activities, such as keeping a hand in a pocket, 
we anticipated that this similarity could introduce bias 
by incorrectly filtering out gait segments with a strongly 
reduced arm swing. To investigate this potential effect, 
we compared the classifier’s sensitivity between pre-med 
and post-med, between the most and least affected sides, 
and across varying MDS-UPDRS Part III pre-med sub-
scores. Comparisons between pre-med and post-med, 
and between the most and least affected sides, were 
adjusted for differences in gait segment duration, fol-
lowing the same approach used in the gait detection step 
(step 1).

Arm swing quantification
The filtered gait segments from step 3 were used to quan-
tify the arm swing RoM in degrees ( ◦ ). We excluded 
participants from the PD group who had less than one 
minute of filtered gait in either the pre-med or post-med 
state, and participants from the control group who had 
less than one minute of filtered gait in the entire visit.

The RoM was computed following the methodology 
developed by Warmerdam and colleagues [18]. First, 
principal component analysis (PCA) was performed on 
the y-axis and z-axis of the gyroscope signals over all fil-
tered gait segments—these two axes were expected to 
reflect arm swing most (see Figure S1 for axis directions). 
The first principal component was extracted to isolate the 
angular velocity in the direction of arm swing. Next, the 
principal component was numerically integrated to esti-
mate the angle. To account for signal drift, a moving aver-
age was subtracted from the angle using a rolling window 
of one second. Peaks in the estimated angle were then 
automatically selected based on the following criteria: 
(1) a minimum could not be succeeded by another mini-
mum, nor could a maximum be succeeded by another 
maximum; in cases of successive minima or maxima, the 
peak with the highest absolute value was selected, and (2) 
the time between peaks had to be at least 1/1.8 s; in cases 
of peaks occurring too close together, the last peak was 
discarded. The threshold of 1.8 s aligns with the selected 
frequency band for gait, where the first harmonic is not 
expected to exceed 1.8 Hz. Finally, the RoM was com-
puted as the absolute differences between consecutive 
peaks (see Fig. 2).

We computed aggregations of the arm swing RoM per 
participant as candidate digital biomarkers (for the PD 
group: separately for the pre-med and post-med states). 
Specifically, we extracted the median RoM as a measure 
of general performance and the 95th percentile RoM as a 
measure of capacity.

To further validate the filtering step (step 2), we 
assessed whether the filter introduced bias by erroneously 

Table 3 Features used in filtering gait

Feature Axis Sensor # Features

Standard deviation temporal 
signal

Norm Accelerometer 1

Mel Frequency Cepstral Coef-
ficients

Norm Accelerometer 12

Dominant frequency Per axis Accelerometer 3

Power in frequency bands Per axis Accelerometer 12

Gravitational acceleration Per axis Accelerometer 6

Mel Frequency Cepstral Coef-
ficients

Norm Gyroscope 12
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filtering out gait segments with a small arm swing RoM. 
This was evaluated by comparing the median and 95th 
percentile RoM for predicted versus video-annotated gait 
segments without other arm activities using Bland-Alt-
man plots and intra-class correlation coefficients (ICCs).

Finally, we assessed the effect of filtering gait on the 
ability to measure changes in arm swing RoM follow-
ing dopaminergic medication intake. First, we evaluated 
whether the arm swing parameters reflected expected 
differences between the PD and control groups, between 
pre-med and post-med states, and between the most and 
least affected sides. Next, we assessed the added value of 
filtering gait by comparing changes in arm swing param-
eters following dopaminergic medication intake between 
unfiltered and filtered gait. The change in the arm 
swing parameters following dopaminergic medication 
intake was defined for each participant as the difference 
between pre-med and post-med values.

Model evaluation and statistical analysis
Model performance for gait detection (step 1) and filter-
ing gait (step 2) was evaluated at the timestamp level. For 
each timestamp, predictions were determined using uni-
form majority voting over overlapping windows. Results 
for each step were stratified by gait segment duration. A 
gait segment was defined as a sequence of consecutive 
timestamps labeled as gait in the video annotations. A 
new segment was initiated if the gap between consecu-
tive gait timestamps exceeded 1.5 s. Gait segments were 
classified as short (< 5 s), moderately long (5–10 s), long 
(10–20 s) or very long ( ≥ 20 s).

Due to the non-normality of performance metrics and 
arm swing parameters across participants, statistical 

significance was assessed using the non-parametric Wil-
coxon signed-rank test for dependent samples and the 
rank-sums test for independent samples. Statistical sig-
nificance was denoted as follows: * (p < 0.05), ** (p < 0.01), 
*** (p < 0.001), and **** (p < 0.001). Effect sizes for post-
hoc comparisons were reported as the median difference 
( � ) with a 95% confidence interval (CI). Correlations 
were assessed using Spearman’s rank-order correlation, 
denoted by rs . All statistical analyses were performed in 
RStudio 2023.12.0.

Results
Gait detection
The amounts of video-annotated gait and non-gait data 
used in the following analyses are presented in Table 4.

Selecting a classifier for gait detection
The classification performance of the LR and RF classi-
fiers for gait detection is shown in Table 5. Compared to 
the LR classifier, the RF classifier achieved higher bal-
anced accuracy on the most affected side in both pre-med 
( � = 0.02, 95% CI [0.01, 0.03], p < 0.001) and post-med ( � 
= 0.02, 95% CI [0.00, 0.03], p < 0.01). As a result, the RF 
classifier was selected for subsequent analyses. The fea-
ture coefficients of the LR classifier are shown in Figure 
S2, while the feature impurity scores of the RF classifier 
are shown in Figure S3.

Effect of behavior on gait detection
We evaluated the effect of behavior on model perfor-
mance by examining specificity for different non-gait 
activities and sensitivity to detecting gait across different 
arm activities and varying gait segment durations.

Fig. 2 Illustration of the computation of the range of motion. a The motion of a single arm from a backward position to a forward position. The 
range of motion is defined as the difference, �θ , in the estimated angle θ between the final points of consecutive forward and backward swings 
of the same arm. b An example of the estimated angle in degrees (deg) of a single time window, with detected peaks marked in red. The range 
of motion is calculated as the absolute difference between consecutive peaks
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Non-gait activities that were frequently misclassified 
as gait primarily included walking the stairs, turning, and 
postural transitions (see Figure S4). Gait misclassified as 
non-gait was often attributed to arm activities such as 
grabbing, pulling, and pushing movements. In contrast, 
gait without other arm activities was particularly often 
correctly classified as gait (see Figure S5).

The classifier’s sensitivity increased with the duration 
of gait segments. The mean (SD) sensitivity in PD pre-
med for short gait segments (< 5  s) was 0.63 (0.18), for 
moderately long gait segments (5–10  s) was 0.82 (0.13), 
for long gait segments (10–20 s) was 0.77 (0.17), and for 
very long gait segments (> 20 s) was 0.95 (0.13) (see Fig-
ure S6). Sensitivity for very long gait segments was sig-
nificantly higher than for other gait segment durations: 
short ( � = 0.32, 95% CI [0.24, 0.41], p < 0.001), moder-
ately long ( � = 0.12, 95% CI [0.08, 0.18], p < 0.001), and 
long ( � = 0.17, 95% CI [0.08, 0.28], p < 0.001).

Effect of PD motor signs on gait detection
To assess whether PD and the severity of motor signs 
affected the ability to detect gait, we compared the sen-
sitivity of the RF classifier across several groups: PD ver-
sus controls, pre-med versus post-med, the most affected 
versus the least affected sides (pre-med), and varying 
MDS-UPDRS Part III pre-med subscores.

Gait detection sensitivity was comparable between 
pre-med and post-med conditions ( � = 0.00, 95% CI [ −
0.04, 0.08], p = 0.95), after correcting for differences in 
gait segment duration and arm activities. Sensitivity in 

controls was higher compared to pre-med ( � = 0.06, 95% 
CI [0.03, 0.09], p < 0.001), but not higher compared to 
post-med ( � = 0.00, 95% CI [ −0.01, 0.02], p = 0.87). A 
more detailed analysis can be found in Figure S7.

Individuals with higher MDS-UPDRS Part III pre-med 
subscores did not show lower sensitivity pre-med for any 
gait segment duration, as shown in Figure S8. No signifi-
cant differences were found between the most and least 
affected sides ( � = 0.00, 95% CI [ −0.02, 0.03], p = 0.68).

Lastly, we observed that tremor was rarely misclassified 
as gait, despite its periodic characteristics. The mean (SD) 
specificity of the classifier during tremor was 0.94 (0.06), 
which was not significantly different from the specificity 
of 0.93 (0.04) in the absence of tremor (p = 0.74).

Filtering gait: detection of gait without other arm activities
The steps below were conducted by processing gait seg-
ments detected by the gait detection model (see Table 6 
for the amount of detected gait). Note that only the PD 
group was used for training these classifiers because 
there were no arm activity video labels for the control 
group.

Selecting a classifier for filtering gait
Classification performance of the LR and RF classifiers 
for detecting gait without other arm activities can be 
found in Table 7. We found no statistically significant 
difference in balanced accuracy between the classifiers 
( � = 0.00, 95% CI [ −0.01, 0.03], p = 0.56). Therefore, 
we selected the LR classifier for its inherent simplicity. 

Table 4 The duration (in minutes) of video-annotated gait and non-gait used

The mean (SD) was calculated over all individuals constituting the gait segment duration stratification. PD is stratified by medication state: prior to (pre-med) and after 
medication intake (post-med)

Gait Non-gait

Short Moderately long Long Very long

(< 5 s) (5−10 s) (10−20 s) (≥ 20 s) Total Total

PD pre-med 0.9 (0.5) 1.8 (0.8) 1.9 (0.8) 9.3 (5.8) 13.8 (5.9) 77.9 (15.5)

PD post-med 0.5 (0.3) 1.3 (0.5) 1.1 (0.7) 8.8 (5.4) 11.6 (5.7) 45.5 (16.5)

Controls 1.7 (0.6) 2.3 (0.8) 1.8 (1.4) 14.3 (5.5) 20.1 (6.6) 75.4 (15.6)

Table 5 Performance of the classifiers for gait detection

Classifiers include the logistic regression (LR) and random forest (RF). Performance is stratified by pre-medication (pre-med) and post-medication (post-med) states in 
the PD group. Results are shown for the most affected side of PD participants, and for controls, matching of affected side stratifications based on self-reported hand 
dominance was applied. Performance metrics are presented as mean (SD) across participants

 Group Sensitivity Specificity AUC 

LR RF LR RF LR RF

PD pre-med 0.83 (0.10) 0.89 (0.09) 0.96 (0.03) 0.95 (0.03) 0.98 (0.02) 0.98 (0.01)

PD post-med 0.88 (0.09) 0.95 (0.05) 0.94 (0.04) 0.91 (0.05) 0.98 (0.01) 0.99 (0.01)

Controls 0.92 (0.03) 0.96 (0.02) 0.88 (0.06) 0.82 (0.09) 0.97 (0.01) 0.98 (0.01)
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Feature coefficients of the LR classifier are shown in 
Figure S9, and feature impurity scores of the RF classi-
fier are shown in Figure S10.

Effect of behavior on filtering gait
To better understand how behavior affects the classi-
fier, we examined the effect of specific arm activities 
on specificity and the effect of gait segment duration 
on sensitivity.

Fig.  3 displays the classifier’s specificity for each 
arm activity, showing considerable variability both 
within and between categories of arm activities. Arm 
activities with relatively low specificity were typically 
shorter in duration, such as making hand gestures, 
pointing, or grabbing an object. However, some arm 
activities of longer duration also exhibited low speci-
ficity, including holding an object downward, holding 
a dog leash, or keeping hands on front trouser pockets. 
In contrast, arm activities with consistently high speci-
ficity included actions such as opening and closing 
doors and cabinets, as well as holding objects forward.

The classifier’s sensitivity was influenced by the 
duration of gait segments (see Figure S11). For the 
most affected side pre-med, the mean (SD) sensitivity 
was 0.53 (0.14) in short segments, 0.70 (0.14) in mod-
erately long segments, 0.83 (0.19) in long segments, 
and 0.88 (0.23) in very long segments.

Effect of PD motor signs on filtering gait
To investigate the potential effect of motor sign sever-
ity on the ability to correctly classify gait without other 
arm activities, we compared the sensitivity of the clas-
sifier between pre-med and post-med conditions (on 
the most affected side). Additionally, for pre-med, we 
compared the most affected side with the least affected 
side (see Table  7). The sensitivity was not higher in 
post-med compared to pre-med after adjusting for dif-
ferences in gait segment duration ( � = 0.02

◦ , 95% CI 
[ −0.04, 0.21], p = 0.27). We also did not find a lower 
sensitivity in pre-med on the most affected side com-
pared to the least affected side ( � = 0.01

◦ , 95% CI [ −
0.04, 0.05], p = 0.86).

To further validate that hypokinesia severity did 
not affect the ability to detect gait without other arm 
activities, we examined the correlation between the 
sensitivity in pre-med most affected side and the MDS-
UPDRS Part III pre-med subscore across gait segment 
duration categories (see Figure S13). Individuals with a 
higher MDS-UPDRS Part III pre-med subscore showed 
a lower sensitivity in moderately long segments ( rs = −
0.62, 95% CI [ −0.83, −0.26], p < 0.01), long segments ( rs 
= −0.67, 95% CI [ −0.87, −0.30], p < 0.01), and in very 
long segments ( rs = −0.51, 95% CI [ −0.81, −0.03], p = 
0.04). We did not observe this correlation in short seg-
ments ( rs = −0.34, 95% CI [ −0.67, 0.11], p = 0.13).

Table 6 Duration (in minutes) of predicted gait used as input for the following analyses

The mean (SD) was calculated over all individuals constituting the gait segment duration stratification. Gait segment duration was determined based on annotated 
gait, and the ’non-gait’ category refers to annotated non-gait predicted as gait. PD participants are stratified by medication state: prior to (pre-med) and after 
medication intake (post-med). The duration shown was for the most affected side only, as results for the least affected side were comparable

Short Moderately long Long Very long Non-gait Total
(< 5 s) (5-−10 s) (10-−20 s) (≥ 20 s)

PD pre-med 0.6 (0.4) 1.5 (0.8) 1.5 (0.7) 8.9 (5.7) 4.1 (2.4) 16.5 (6.7)

PD post-med 0.4 (0.3) 1.1 (0.5) 1.0 (0.6) 8.7 (5.5) 3.8 (2.7) 14.9 (7.3)

Controls 1.4 (0.5) 2.1 (0.7) 1.6 (1.3) 14.2 (5.5) 12.7 (6.5) 32.5 (10.4)

Table 7 Performance of the classifiers for detecting gait without other arm activities

Classifiers include the logistic regression (LR) and the random forest (RF). The PD group is stratified by medication state (prior to (pre-med) and after medication intake 
(post-med)) and affected side (most affected side (MAS) and least affected side (LAS)). Performance metrics are presented as mean (SD) across participants

 Group Sensitivity Specificity AUC 

LR RF LR RF LR RF

Pre-med MAS 0.75 (0.22) 0.72 (0.28) 0.92 (0.04) 0.93 (0.04) 0.93 (0.06) 0.92 (0.10)

Post-med MAS 0.85 (0.19) 0.86 (0.14) 0.90 (0.08) 0.89 (0.09) 0.96 (0.02) 0.96 (0.03)

Pre-med LAS 0.79 (0.17) 0.77 (0.20) 0.91 (0.06) 0.91 (0.10) 0.94 (0.04) 0.92 (0.09)

Post-med LAS 0.80 (0.23) 0.77 (0.28) 0.85 (0.14) 0.84 (0.17) 0.93 (0.08) 0.90 (0.14)
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Arm swing quantification
The following analyses were conducted using the fil-
tered gait segments. The amount of gait data remain-
ing after filtering out gait segments with other arm 
activities is shown in Table  8. Two PD participants 
with less than one minute of filtered gait in either the 
pre-med or post-med state were excluded.

Impact of misclassifications on arm swing parameters
To evaluate the impact of misclassifications in detecting 
and filtering gait (steps 1 and 2), we assessed the agree-
ment between the arm swing parameters derived from 
predicted and video-annotated gait segments without 
other arm activities.

The ICCs are presented in Table  9. Overall, the ICCs 
for both the median and 95th percentile RoM were high 
across stratifications, with a moderate ICC observed for 
the median RoM post-med on the least affected side.

Fig. 3 Specificity of the classifier detecting gait without other arm activities, stratified by arm activity. Since filtering gait was performed 
on predicted gait segments, the input included non-gait activities misclassified as gait, (e.g., turning or sitting), categorized as Not gait 
and highlighted in orange. The number in square brackets indicates the total number of participants exhibiting each arm activity

Table 8 Amount of filtered gait in minutes stratified by gait segment duration

Gait segment duration was determined based on annotated gait, hence the category non-gait concerns annotated non-gait that did not get detected as such by the 
classifiers. Groups include the PD group prior to medication intake (pre-med), the PD group after medication intake (post-med), and the control group. The mean (SD) 
was calculated across individuals. The time shown was for the most affected side only

Group Short Moderately long Long Very long
(< 5 s) (5−10 s) (10−20 s) (≥ 20 s) Non-gait Total

PD pre-med 0.3 (0.3) 0.7 (0.5) 0.6 (0.5) 5.9 (4.9) 0.9 (0.7) 6.8 (5.8)

PD post-med 0.3 (0.2) 0.5 (0.4) 0.8 (0.5) 5.4 (4.7) 1.1 (1.4) 6.7 (5.4)

Controls 0.4 (0.2) 0.7 (0.4) 0.7 (0.8) 10.9 (5.3) 1.4 (0.8) 14.1 (5.9)
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The Bland-Altman plots of predicted versus video-
annotated gait without other arm activities are shown in 
Fig. 4. No evidence of systematic bias was found in either 
the median or 95th percentile RoM. For both meas-
ures, the differences between predicted and annotated 
gait segments were generally small relative to variability 
observed between participants in the mean of predicted 
and annotated segments. Large discrepancies between 
predicted and annotated segments in post-med were 

primarily attributed to dyskinesia in the upper limbs, 
which was classified as other arm activity, leading to an 
underestimation of the RoM.

Sensitivity of arm swing parameters to PD motor signs
We evaluated whether the arm swing parameters of fil-
tered gait segments exhibited expected differences 
between individuals with PD and controls, between pre-
med and post-med, between the most and least affected 
sides in pre-med, and across varying MDS-UPDRS Part 
III pre-med subscores.

Fig.  5 shows the median and 95th percentile RoM in 
filtered gait segments in pre-med, post-med, and con-
trols. Compared to pre-med, controls exhibited a higher 
median RoM ( � = 18.41

◦ , 95% CI [9.96, 29.86], p < 0.001) 
and 95th percentile RoM ( � = 29.44

◦ , 95% CI [20.18, 
40.42], p < 0.001). However, compared to post-med, con-
trols did not show a higher median RoM ( � = 7.54

◦ , 
95% CI [ −7.08, 18.03], p = 0.26) or 95th percentile RoM 
( � = 9.43

◦ , 95% CI [ −9.08, 26.32], p = 0.32).
Both the median RoM ( � = 14.01

◦ , 95% CI [4.80, 
22.55], p < 0.001) and the 95th percentile RoM 
( � = 20.58

◦ , 95% CI [10.81, 29.51], p < 0.001) were 
greater in post-med compared to pre-med. As shown in 
Figures  S14 and S15, the increase in median RoM after 

Table 9 Intra-class correlation coefficients [95% confidence 
intervals] for predicted and annotated gait without other arm 
activities, computed within subjects

Results are reported for the median and 95th percentile range of motion (RoM), 
stratified by medication state (pre-medication (pre-med) versus post-medication 
(post-med)) and affected side (most affected side (MAS) versus least affected 
side (LAS))

 Group Parameter

Median RoM 95th percentile RoM

Pre-med MAS 1.00 [0.99, 1.00] 0.99 [0.99, 1.00]

Pre-med LAS 0.97 [0.93, 0.99] 0.99 [0.98, 1.00]

Post-med MAS 0.99 [0.98, 1.00] 0.97 [0.93, 0.99]

Post-med LAS 0.64 [0.26, 0.85] 0.99 [0.97, 1.00]

Fig. 4 Bland-Altman plots of the a median and b 95th percentile range of motion. The x-axis represents the mean, and the y-axis represents 
the difference between the predicted and annotated gait segments without other arm activities. Each data point corresponds to an individual 
participant with Parkinson’s disease, represented across all combinations of prior to medication intake (pre-med) versus after medication 
intake (post-med), and most affected side (MAS) versus least affected side (LAS). The horizontal line indicates the median across all participants 
and combinations
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medication intake was primarily observed in very long 
gait segments (short: p = 0.08; moderately long: p = 0.07; 
long: p = 0.07; very long: p < 0.001). For the 95th percen-
tile RoM, increases were noted in short and very long gait 
segments only (short: p = 0.01; moderately long: p = 0.13; 
long: p = 0.21; very long: p < 0.001).

Figure S16 shows the differences in arm swing param-
eters between the most and least affected sides. We did 
not observe a reduction in the median or 95th percen-
tile RoM on the most affected side compared to the least 
affected side in pre-med (median: � = 0.72◦ , 95% CI [ −
8.17, 6.04], p = 0.80; 95th percentile: � = 2.31, 95% CI [ −
7.26, 12.00], p = 0.65).

As shown in Fig.  6, individuals with higher MDS-
UPDRS Part III pre-med subscores did not exhibit 
smaller median RoM ( rs = −0.36, 95% CI [ −0.71, 0.13], p 
= 0.14) and 95th percentile RoM ( rs = −0.32, 95% CI [ −
0.68, 0.18], p = 0.20).

Effect of filtering gait on medication‑induced differences 
in arm swing parameters
To examine the added value of filtering out gait segments 
with other arm activities, we compared the change in 

arm swing parameters following dopaminergic medica-
tion intake between unfiltered and filtered gait.

Fig. 7 displays the distribution of changes in the median 
and 95th percentile RoM after medication intake for fil-
tered and unfiltered gait. The difference between pre-
med and post-med increased after filtering gait for the 
median RoM ( � = 7.92◦ , 95% CI [1.25, 14.72], p = 0.01) 
and the 95th percentile RoM ( � = 2.13◦ , 95% CI [0.04, 
5.77], p = 0.03).

Discussion
This study addresses an important challenge in quantify-
ing arm swing during free-living gait using wrist-worn 
sensors: the variability of other arm activities that occur 
during gait. By filtering out gait segments with these 
other arm activities, we aimed to improve the accuracy 
of arm swing estimations in individuals with PD. Using 
arm activity annotations from video recordings, we dem-
onstrated a reliable method for filtering gait in this popu-
lation, independent of medication state. Importantly, our 
results showed no systematic bias in arm swing RoM 
estimations by erroneously filtering out arm swings 
with a smaller RoM, and a high agreement between pre-
dicted and annotated gait without other arm activities. 

Fig. 5 The a median and b 95th percentile range of motion in filtered gait segments for the most affected side of the PD group prior to medication 
intake (pre-med), the PD group after medication intake (post-med), and the control group
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As hypothesized, the derived arm swing RoM were 
reduced in PD compared to controls, and reduced in 
pre-med compared to post-med. Filtering gait increased 
the change in both the median and 95th percentile RoM 

following dopaminergic medication intake, highlighting 
its potential value for monitoring treatment response in 
clinical trials.

Fig. 6 The a median and b 95th percentile range of motion of filtered gait segments correlated with the MDS-UPDRS Part III pre-medication 
subscore. Data points represent the aggregated measures for the most affected side of each individual in the PD group prior to medication intake. 
A second-order polynomial regression fitted to the data points is displayed with a 95% confidence interval in orange

Fig. 7 The change in a median and b 95th percentile range of motion in degrees (deg) after medication intake across PD participants, comparing 
predicted gait (unfiltered gait) and predicted gait predicted to have no other arm activities (filtered gait)
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Arm swing quantification
Our findings align with in-clinic and active assessment 
studies that demonstrate the sensitivity of arm swing 
RoM and other arm swing parameters to the presence of 
PD and the intake of dopaminergic medication [18–23]. 
However, the question of whether arm swing increases 
after dopaminergic medication intake during free-living 
gait has been debated [5, 22, 24, 33]. For instance, one 
study reported insensitivity to dopaminergic medication 
during dual-task gait, which is thought to better simu-
late real-world conditions [24]. In contrast, we found that 
dopaminergic medication increased both the median and 
95th percentile RoM during unscripted gait at the group 
level, although responsiveness varied among individu-
als. This raises questions about the reliability of scripted 
dual-task gait as a true representation of real-world con-
ditions. Free-living gait may better be characterized as a 
blend of single- and multi-tasking scenarios influenced 
by environmental and behavioral factors. Supporting this 
notion, studies in older adults have indicated that neither 
single-task nor dual-task gait accurately reflects daily liv-
ing conditions at the individual level [45]. Additionally, 
by filtering out gait segments with other arm activities, 
our analysis focuses more on single-task gait, which may 
contribute to the observed responsiveness to dopamin-
ergic medication. Further research is necessary to vali-
date these findings in genuinely free-living conditions, 
as our study still involved assessors accompanying the 
participants.

Although PD is associated with arm swing asymme-
try [46, 47], we found no differences in the arm swing 
RoM between the most and least affected sides. A pos-
sible explanation is that we only included PD patients 
with response fluctuations, which generally occur later 
in the disease. In early stages of PD, hypokinesia typi-
cally has a strongly asymmetrical presentation [48, 49], 
but, as the disease progresses, the asymmetry decreases 
because of increased impairment on the least affected 
side [50]. Currently, comparing free-living arm swing 
asymmetry across disease stages is difficult because most 
studies have focused on task-based gait assessments [21, 
24, 29, 47]. Therefore, future work will assess free-living 
arm swing asymmetry across different disease stages, 
to examine whether it can be used to measure disease 
progression.

Gait detection
Accurate detection of gait (without other arm activi-
ties) is essential for reliably quantifying arm swing dur-
ing free-living gait. While wrist-worn sensor-based gait 
detection algorithms are preferred in longitudinal stud-
ies due to their low obtrusiveness, they generally under-
perform compared to those using sensor data from the 

lower back or ankle [36, 51]. One way to mitigate this 
performance gap is through advanced machine learning 
techniques that better capture gait-related subtleties. For 
instance, self-supervised and deep learning approaches 
have demonstrated significant improvements in detect-
ing gait using wrist-worn sensor data in individuals with 
PD [37, 52]. Given the strengths and limitations of our 
dataset, we opted for a relatively simple supervised clas-
sifier. However, the modularity of our pipeline allows 
for future integration of more advanced methods. Nota-
bly, our approach demonstrated no reduced ability to 
detect gait (without other arm activities) due to PD. Any 
replacement algorithms must ensure unbiased detection, 
avoiding the risk of overestimating arm swing in individ-
uals with hypokinetic arm swing.

Segment duration
The optimal gait segment duration for assessing the pres-
ence of PD and the effect of dopaminergic medication 
in free-living conditions has long been debated [29, 53, 
54]. In our study, we demonstrated a positive correla-
tion between the ability to detect gait (without other arm 
activities) and gait segment duration. This implies that 
free-living gait analysis using wrist-worn sensors may 
naturally focus on the quantification of longer gait seg-
ments. This could be beneficial, since we observed differ-
ences between pre-med and post-med median and 95th 
percentile RoM to be most significant in gait segments 
longer than 20  s. Other studies equivalently showed an 
increased ability to discriminate between PD and con-
trols when considering longer gait segments [29, 54]. This 
suggests that longer gait segments may be preferable for 
both gait detection, filtering gait, and arm swing quantifi-
cation, although it remains imperative for future work to 
validate the sensitivity of arm swing parameters in vary-
ing gait segment durations in larger cohorts.

Strengths
This study marks one of the first explorations of filtering 
out gait segments with other arm activities. A notable 
strength of this study is its unscripted nature, particularly 
important given the scarcity of video-monitored free-
living studies. This approach allowed for the annotation 
of a wide variety of arm activities during gait. However, 
validation in truly free-living conditions remains essen-
tial, as participants’ awareness of being monitored and 
the presence of assessors could have influenced the par-
ticipants’ behavior. Another strength of this study is that 
we made all sensor data and video annotations of activi-
ties and arm activities publicly available. This open access 
allows other researchers to improve or iterate upon the 
presented methods. The analysis pipeline developed 
in this study is integrated into the Parkinson’s Disease 
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Digital Markers (ParaDigMa) toolbox [55]. The proposed 
modular approach to detecting gait, filtering gait and 
quantifying arm swing enables the comparison of our 
findings with other gait detection research, and facilitates 
the substitution of the implemented methods with more 
advanced techniques in future studies.

Limitations
This study carries several limitations that warrant discus-
sion. First, the sample of 25 PD participants was relatively 
small, and larger studies are needed to better capture the 
heterogeneity of PD. For example, we observed consid-
erable variability in the model’s ability to correctly clas-
sify gait without other arm activities, both across types 
of arm activities and among individual participants. 
Similarly, the small sample size limits the reliability of 
the increased difference between pre-med and post-med 
range of motion after filtering gait. In response, to vali-
date the proposed methodology, it is necessary to assess 
the classifiers’ variability in larger-scale studies across 
diverse cohorts and settings, and to verify the reliability 
across subsequent weeks. Both the validity and reliabil-
ity we aim to address in upcoming work. Importantly, 
despite the model’s reduced accuracy in detecting gait 
without other arm activities in participants with rela-
tively high MDS-UPDRS Part III subscores, we found 
no systematic overestimation of arm swing parameters. 
Secondly, our model’s sensitivity to dyskinesias presents 
another limitation. Our dataset included only one par-
ticipant with mild dyskinesias (25–50% of the waking 
day) and five with slight dyskinesias (0–25% of the wak-
ing day), likely due to the adverse effects of dopaminergic 
medication. In the individual with mild dyskinesias, these 
episodes were often misclassified as gait with other arm 
activities, leading to notable discrepancies in the RoM 
between video-annotated and predicted gait segments 
without other arm activities. More data from individu-
als with prevalent dyskinesias are essential for accurately 
distinguishing these from voluntary arm activities during 
gait. Furthermore, further research is needed to deter-
mine whether complex and fluctuating motor patterns, 
such as dyskinesias, can be reliably captured using a sin-
gle wrist-worn sensor [56].

Despite these limitations, the findings of this study 
provide important insights into the potential for using 
the median and 95th percentile RoM as indicators of 
dopaminergic treatment response. Our upcoming work 
will continue the validation by assessing the suitabil-
ity of these measures for longitudinally tracking disease 
progression. This is an imperative next step toward the 
acceptance of these arm swing measures as digital bio-
markers in clinical trials investigating disease-modifying 
therapies.

Conclusion
Using a video-referenced dataset of unscripted daily 
activities, we developed a method to isolate gait seg-
ments free from concurrent arm activities. This ena-
bles a more specific estimation of arm swing range of 
motion in free-living conditions using wrist-worn sen-
sors. We show that this approach can be used for moni-
toring PD-related changes in arm swing, offering a tool 
to monitor the course of PD and response to dopamin-
ergic treatment in daily life.
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