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Abstract 

Background  Detecting Foot Strike and Foot Off events in human gait, which is cyclic yet variable, consistently 
requires expert correction. This subjective correction can reduce spatiotemporal parameters, joint kinematic 
and kinetic accuracy, regardless of the gait event detection algorithm used from the literature. Recently developed 
methods have combined existing algorithms to better capture this gait variability, using Ground Reaction Forces. 
However, those methods do not fully account for intra-individual variability, particularly in the case of multiple 
and simultaneous gait patterns.

Method  We developed a deterministic algorithm called the Multi-Condition algorithm. This algorithm identi-
fies the Foot Strike when the first of the foot markers loses its degrees of freedom and the Foot Off when the last 
of the foot markers regains its degrees of freedom.

Results  This algorithm was tested on 819 C3D gait files from 9 healthy individuals and 50 individuals with stroke, 
multiple sclerosis, spinal cord injury, cerebral palsy, polio, neuromuscular disease or amputation. The Multi-Condition 
algorithm detected both Foot Strike and Foot Off within a range of three frames, which was more accurate and pre-
cise than the inter-rater variability of expert correction. Detection of gait events required only a few seconds, regard-
less of the pathology or gait pattern, even when considering intra-individual variability.

Conclusion  Accurately identifying gait events is the first critical step in providing reliable gait analysis parameters 
for clinicians. The Multi-Condition algorithm aims to achieve deterministic consensus in the accurate and precise 
identification of gait events, regardless of the pathology or the gait pattern. To promote its adoption and ongoing 
testing, the Multi-Condition algorithm is available as an open-access resource.
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Introduction
Human gait is the result of constant learning and 
adjustments. It evolves with physical activity, 
age, and everyday life experiences [1]. In various 
situations, humans adapt their gait to the ground 
materials, slopes, obstacles and can change speed and 
direction. Pathological gait must additionally adapt to 
neuromuscular impairments (e.g. weakness or balance 
disorders) and associated complications (e.g. pain, 
stiffness or limited range of motion) [2].

Instrumented gait analysis is recommended to 
obtain objective quantitative data and assist clinicians 
in decision-making. Gait analysis involves calculating 
spatiotemporal parameters and joint kinematics and 
kinetics. For accurate calculation, two gait events need 
to be detected: Foot Strike and Foot Off [3].

In clinical settings, gait events are often automatically 
detected, to save time. Different algorithms have been 
developed for this purpose, depending on data from 
the sensors used in gait analysis. Kinetic data from 
force plates embedded in the ground is generally 
considered the gold standard. However, often only one 
step at a time can be detected by force platforms and 
this method becomes invalid in the case of slide or drag 
gait patterns, or the use of walking aids. In these cases, 
kinematic data from marker-based motion capture are 
used to detect gait events.

Many studies have proposed deterministic algorithms 
using the position [4, 5], the velocity [6–8], or the 
acceleration [9, 10] of foot markers. Differences 
in cohorts and analysis protocols have required 
comparison studies in order to assess reliability and 
efficiency. Comparisons of these methods mostly 
identified Ghoussayni’s algorithm as the most reliable 
[11–13]. However, for a clinically diverse cohort, their 
precision remains insufficient, and expert correction is 
still needed.

Deep learning-based approaches [14–16] and an auto-
selection approach [17] have recently been developed to 
address this issue. Deep learning is promising but has 
drawbacks because it relies on a large training database, 
with good characteristics, and is unable to explain the 
process that leads to event detection. The auto-selection 
approach uses Ground Reaction Forces (GRF) to compare 
deterministic algorithms and select the most precise 
one for a specific condition, side, and type of event. 
The general precision improves significantly compared 
to that of deterministic algorithms. However, the use 
of a few “clean hits” on force platforms excludes a large 
proportion of gait cycles. Furthermore, if an individual’s 
gait changes between cycles, the induced variability is not 
taken into account. Additionally, gait cycles outside the 
force platforms might still require expert correction.

Therefore, the starting point of this study is the need 
for an approach that copes with versatility in large and 
diverse cohorts. To adapt to the variability of patterns 
between gait cycles, we adopted a twofold approach:

•	 Instead of using one hindfoot marker for Foot Strike 
and one forefoot marker for Foot Off, we considered 
every part (marker) of the system (foot).

•	 We considered contact with the ground as 
comparable to the addition of a kinematic rigid 
foot-ground link with no degrees of freedom for a 
very short time.

This approach allowed us to describe Foot Strike and 
Foot Off as follows:

Following this, we developed a new algorithm, called 
Multi-Condition, and tested it for validation with clinical 
data. We compared its performance with that of other 
algorithms in the literature, with expert-rater considered 
the gold standard, which was also discussed. In addition, 
we optimised the quadruplet of calibration parameters 
and evaluated the algorithm’s performance using 
different foot markersets.

Materials and methods
The experimental protocol was divided into four steps. 
The first step defined the required accuracy and precision 
of event detection by evaluating inter-rater reliability. The 
second step performed parametric optimisation to set 
the four calibration parameters of the Multi-Condition 
algorithm to achieve the accuracy and precision specified 
in the first step. The third step compared the algorithm’s 
performance (accuracy and precision) with that of other 
algorithms in literature. The fourth step analysed its 
sensitivity to the used markerset to determine which foot 
markers were most important for accurate and precise 
detection of Foot Strike and Foot Off.

Clinical setup
We used a database of gait analyses from healthy indi-
viduals and people with pathological gait. All participants 
walked barefoot (or with a prosthesis) over a 10-metre 
instrumented walkway, either at their comfortable walk-
ing speed only, or at their comfortable and maximum 
walking speed, depending on the purpose of the gait 
analysis. Kinematic and kinetic data were collected at a 

(1)FS = First of the foot markers to stop moving (in 3 dimensions)

(2)FO = Last of the foot markers to start moving (in 3 dimensions)
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sampling frequency of 100Hz using the Motive version 
3.0.3 optoelectronic motion capture system (15 PrimeX 
13 cameras, Optitrack, Natural Point, Corvallis, OR, 

USA). We used 58 markers based on the Conventional 
Gait Model v.2.5 [18]. In addition, during the develop-
ment of the Multi-Condition algorithm, one more marker 
was added on the 1st interphalangeal joint of each foot, 
resulting in 7 foot markers (Fig.  1) and 60 markers in 
total. Thus, the inter-rater reliability evaluation was car-
ried out prior to the introduction of these two markers, 
while the development of the Multi-Condition algorithm 
was carried out with the 60 markers.

The acquired data were manually cleaned by filling all 
discontinuities in the marker trajectories with a poly-
nomial and/or relational algorithm. Each marker was 
labelled using Qualisys Track Manager version 2020.2. 
The gait event detection algorithms listed in Table 1 are 
programmed to run on Matlab version 2018a and rely 
on the BTK biomechanical toolkit library  [19]. Labelled 
gait events were checked visually using Mokka version 

Fig. 1  The foot markerset based on the Conventional Gait Model 
v.2.5 [18], with an additional marker on the 1st interphalangeal joint. 
HEE: calcaneus, ANK: lateral malleolus, TOE: 2nd metatarsocuneiform 
joint, VMH: 5th metatarsophalangeal joint, SMH: 2nd 
metatarsophalangeal joint, FMH: 1st metatarsophalangeal joint, HLX: 
1st interphalangeal joint marker

Table 1  Outline of the gait event detection algorithms compared in this study

ANK Lateral malleolus marker, CGM Conventional Gait Model, FMH 1st metatarsophalangeal joint marker, FO Foot Off, FS Foot strike, GRF Ground reaction Forces, HEE 
Calcaneus marker, HLX 1st interphalangeal joint marker, MC7 Multi-condition algorithm based on 7 foot markers, SMH 2nd metatarsophalangeal joint marker, TOE 2nd 
metatarsocuneiform joint marker, VMH 5th metatarsophalangeal joint marker

Quantity Component Marker Description Author

Position Y HEE, SACR​ FS: Maximum of antero-posterior position difference 
between Heel and Sacrum

Zeni et al. [5]

TOE, SACR​ FO: Minimum of antero-posterior position difference 
between fore-foot (Toe) and Sacrum

Y HEE FS: Maximum of high-filtered antero-posterior Heel position Desailly et al. [4]

TOE FO: Minimum of high-filtered antero-posterior Toe position

Velocity Z HEE, TOE FS: Minimum of foot virtual centre (Heel–Toe middle) vertical 
speed

O’Connor et al. [8]

HEE, TOE FO: Maximum of foot virtual centre (Heel–Toe middle) 
vertical speed

Sagittal
(Y, Z)

HEE FS: Sagittal speed under threshold :
• Ghoussayni: 500 mm/s
• Modified Ghoussayni: 0.78 * walking speed

Ghoussayni et al. [7]
Modified Ghoussayni: Bruening 
et al. [11]

TOE FO: Sagittal speed above threshold :
• Ghoussayni: 500 mm/s
• Modified Ghoussayni: 0.66 * walking speed

3D HEE, TOE FS: pre-detection with Zeni
Pre-processing with 3D speed under threshold:
• Heel: 0.5 * walking speed
• Fore-foot: 0.8 * walking speed

Bonci et al. [6]

TOE FO: pre-detection with Zeni
Pre-processing with 3D speed above threshold:
• Fore-foot: 0.8 * walking speed

HEE, ANK, TOE, VMH,
SMH, FMH, HLX

FS: First of seven foot markers whose speed in each of 3 
components is lower than fractions of the mean antero-
posterior walking speed

Multi-Condition algorithm

FO: Last of seven foot markers whose speed in each of 3 
components is higher than fractions of the mean antero-
posterior walking speed

Acceleration Z HEE FS: Maximum of Heel vertical acceleration Hreljac and Marshall [9]

Y TOE FO: Maximum of Toe antero-posterior acceleration

Y HEE FS: Minimum of antero-posterior Heel acceleration Hsue et al. [10]

TOE FO: Maximum of Toe antero-posterior acceleration
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0.6.2 before being computed by the biomechanical model 
pyCGM version 2.5 [18] to obtain the spatiotemporal 
parameters and joint kinematics and kinetics.

Description of the inter‑rater reliability evaluation
Methods recently introduced in the literature consider 
GRF as the gold standard for evaluating the accuracy and 
precision of gait event detection algorithms [6, 13, 14, 
16, 17]. However, after implementing the auto-selection 
method from Fonseca et al. [17], which uses the vertical 
GRF with a threshold of 20N to select the best algorithm 
(among those listed in Table 1), we found that expert cor-
rection was still necessary. We concluded that, since par-
ticipants do not walk on an instrumented treadmill, only 
a small proportion of steps strike the force platforms, and 
as a consequence, intra-individual gait variability cannot 
be fully considered. Furthermore, during Foot Off, the 
participants’ feet often slid over the platform, regardless 
of their gait pattern, and thus continued to generate a 
GRF. As illustrated in Fig. 2, using the Hallux marker, we 
found that the foot began to move relative to the ground 
at frame 624, whereas the vertical GRF at a threshold of 
20N detected Foot Off at frame 631.

Ultimately, since expert correction remained 
necessary regardless of the deterministic algorithm 
implemented, we considered it as the gold standard 
for our study, as suggested in Bruening and Ridge [11]. 
Therefore, six raters manually labelled a retrospective 
subset of 730 events (368 Foot Strike and 362 Foot 
Off events). These events were acquired from ten 
participants with pathological gait, selected by a 
Physical and Rehabilitation Medicine (PRM) doctor who 
was not involved in the evaluation. They represented 
different gait patterns (steppage, equinus, slide/drag, 
stiff knee gait, miscellaneous) and types of foot contact 
(forefoot, hindfoot, medial, lateral, flat). It is important 
to note that this experiment was conducted before 
introducing a marker on the Hallux and was based on 
the original markerset from Leboeuf et al. [18]. The six 
raters (three physiotherapists and three engineers) had 
different levels of experience in labelling gait events 
(beginner, intermediate, and expert). Since the expert 
raters could potentially have developed bad habits in 
labelling gait events, no weighting was applied among 
raters. So, none of the raters were considered the gold 
standard; instead, the mean of the six raters’ labelled 
events was used for each event.

Description of the Multi‑Condition algorithm
The Multi-Condition algorithm—MC7—was implemented 
as follows (Fig. 3):

1.	 The cleaned and labelled marker positions were 
smoothed using a Butterworth 4th order low-pass 
filter, whose cut-off frequency is one of the four cali-
bration parameters. We chose not to use the three 
position components of each marker as the antero-
posterior and medio-lateral axes would have gener-
ated non-cyclic signals. Instead, we used markers’ 
velocity components to obtain cyclic signals.

2.	 A windowing technique was applied to each C3D file, 
based on the antero-posterior velocity peaks of the 
marker, which occur in the middle of the swing phase 
when neither Foot Strike nor Foot Off can appear.

3.	 Three binary thresholds were applied to the X, 
Y and Z components of each marker velocity. 

Fig. 2  GRF cannot be used as a gold standard to specify the four 
calibration parameters for the Multi-Condition algorithm. GRF-based 
Foot Off (grey circle on the GRF dashed curve) is delayed by seven 
frames compared to Multi-Condition-based Foot OFF (orange circle 
on Hallux Antero-Posterior position solid curve). The green, blue 
and red vertical lines on the graph represent three instants illustrated 
with the same colour code in the picture



Page 5 of 11Vancanneyt et al. Journal of NeuroEngineering and Rehabilitation          (2025) 22:110 	

We believe that the step towards 3D detection is 
necessary [6], but that each component needs to be 
analysed separately. As the task consisted of straight 
line walking, the antero-posterior mean velocity was 
much higher than that of the other components. 
Using the 3D velocity, would place too much 

importance on the antero-posterior component and 
medio-lateral and vertical information would be 
lost. The thresholds for each component were set 
as fractions of the mean antero-posterior walking 
speed of the individual. These thresholds composed 
the three other calibration parameters of the 

Fig. 3  Workflow of the Multi-Condition algorithm with 7 foot markers—MC7. This algorithm uses four calibration parameters: the low-pass filter 
frequency cut-off, and three thresholds on the X, Y and Z axes defined as fractions of the antero-posterior mean walking speed
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algorithm. This detection is based on the hypothesis 
that foot marker velocities reach their lowest values 
when the foot is in single stance phase and is 
rigidly linked to the ground. If the marker velocity 
component was lower than the set threshold, the 
algorithm assigned a value of 1 to the related frame; 
otherwise, it assigned a value of 0.

4.	 For each frame, the three binary vectors—X, Y, Z—
of each foot marker were summed. The first and the 
last frame numbers for which this sum was equal to 
three were kept as the potential Foot Strike and the 
potential Foot Off.

5.	 Finally, we combined each marker’s detection in 
vectors of potential events. The first potential Foot 
Strike and the last potential Foot Off were assigned 
as the Foot Strike and the Foot Off for the related gait 
cycle.

Thus, the algorithm adapted to intra-individual variability 
meaning that within a single gait session, different 
markers could be decisive for the detection of each gait 
event. Four parameters were calibrated to set the Multi-
Condition algorithm: (1) the low-pass filter cut-off 
frequency, (2) the VX threshold, (3) the VY threshold and 
(4) the VZ threshold.

Calibration process of the Multi‑Condition algorithm
The next step involved finding the best quadruplet 
of calibration parameters to meet the requirement 
specifications defined by the inter-rater reliability 
evaluation. Numerical optimisation processes are quite 
standard in mechanical engineering when modelling 
with numerous outputs depends on multiple inputs. A 
drawback of such processes is that if one simulation is 
time-consuming, the number of inputs tested must be 
limited. Various numerical methods exist to find the best 
inputs using a limited number of simulations (Newton, 
Gauss-Newton, etc.). However, there is a risk of finding 
only local rather than global solutions, and potentially 
failing to meet requirement specifications.

In our case, such a constraint does not apply since 
one simulation, on several hundred C3D files, lasts less 
than one minute. Therefore, we decided to conduct a 
parametric optimisation with a regular distribution of the 
explored space of input parameters. So, low-pass filter 
frequency values were tested in the range [5Hz–15Hz] 
with steps of 2Hz, consistent with values reported in the 
literature [6, 11, 13]. To set ranges for the VX, VY, and VZ 
thresholds, a preliminary meta-model with 10% steps 
was established to determine consistent values. This 
led to ranges of [10%–30%], [25%–45%], and [6%–22%] 
respectively, with increments of 2%, resulting in 6  534 
simulations of quadruplets.

For this part of the study, we used a retrospective 
database (after the Hallux markers were added) of 50 
individuals with pathological gait (stroke, multiple 
sclerosis, spinal cord injury, cerebral palsy, polio, 
traumatic brain injury, neuromuscular disease and 
amputees) and 9 healthy individuals, with a female/male 
ratio of 53%/47% and a median age of 45 years (range: [19 
73] years). The 6 534 simulations were then repeated on 
819 C3D gait files, representing 10 910 gait events (5 503 
Foot Strike and 5 407 Foot Off).

Comparison with existing literature and sensitivity analysis
Once the calibration process was completed and the 
specifications defined in the inter-rater reliability 
evaluation had been achieved, we compared the 
performance (precision and accuracy) of the Multi-
Condition algorithm to that of the eight deterministic 
algorithms shown in Table 1.

Not all motion analysis laboratories use the same 
marker set, especially in terms of foot markers. Therefore, 
we conducted a sensitivity analysis by comparing the 
performance of the Multi-Condition algorithm with 
calculations based on fewer foot markers.

Results
Results of the inter‑rater reliability evaluation
Rater expertise seemed more relevant than GRF as a 
gold standard for our study to define the desired accu-
racy and precision of the Multi-Condition algorithm. The 
results are illustrated in box plots in Fig. 4. For both Foot 
Strike and Foot Off, the median is centred on 0. How-
ever, although the inter-whisker range is quite narrow 

Fig. 4  Box-plots (min, lower quartile, median, upper quartile, 
max) for the inter-rater reliability evaluation: the difference 
between the mean of six raters’ evaluations and related events. 
Ratings were done on a subset of 730 events, 368 Foot Strike and 362 
Foot Off
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for Foot Strike (± 2.1 frames), it is much wider for Foot 
Off (+ 6.1/− 6.4 frames). This dispersion for Foot Off was 
explicitly reported by the raters and was attributed to the 
absence of a marker at the tip of the foot, which led the 
raters to infer the moment the foot left the ground.

Thus, the first step of this study defined the parametric 
optimisation process requirement specifications for Foot 
Strike as within a range of ± 2.1 frames and for Foot 
Off as + 6.1/− 6.4 frames, as shown in Fig.  4. However, 
since the Hallux marker was subsequently introduced 
and we could not re-evaluate the inter-rater variability, 
we considered that the best quadruplet of calibration 
parameters for the Multi-Condition algorithm should 
lead to a maximum range of ± 2.1 frames for both Foot 
Strike and Foot Off.

Results of the Multi‑Condition calibration process
The Multi-Condition calibration process required 
approximately 90  h to compute on a desktop computer, 
equating to around 0.06 s per C3D file. The 6 534 simu-
lations are depicted in Fig.  5. On the left side (yellow 
background), the four calibration parameters—low-pass 
frequency, VX, VY, and VZ  —explore the space of pos-
sible values. On the right side (green background), the 
resulting output values are presented. Absolute values of 
medians are displayed instead of raw medians to facilitate 
visual identification of the optimal solution. The aim is to 
find the quadruplet that results in unitary output values 

close to zero (best accuracy and precision) while mini-
mizing their sum (best tradeoff).

The best quadruplet of calibration parameters [9Hz, 
18%, 31%, 8%] is highlighted in red on the figure. It 
resulted in Foot Strike/Off median values of 0 and − 1 
frame, and Foot Strike/Off [5%, 95%] inter-centile values 
of 3 and 4 frames, respectively.

The delay of one frame in the Foot Off median frame 
value could be explained by an order-of-magnitude 
calculation: for a mean walking speed of 1  m/s, at a 
frequency acquisition of 100  Hz, 1 frame corresponds 
to around 1  cm, which is approximately the distance 
between the Hallux marker and the actual tip of 
the hallux. However, although the participants well 
tolerated the Hallux marker on the medial position, 
they found it uncomfortable when positioned on the tip 
of the toe, particularly in the swing phase, at minimum 
foot clearance. Therefore, considering the results in 
Fig. 5, the subsequent results of MC7 were adjusted by 
one frame to compensate for the marker position. We 
name the adjusted MC7 as MC7*.

MC7* Performances: accuracy and precision
The previously calibrated MC7*—with the quadruplet 
[9Hz, 18%, 31%, 8%]—was compared to the algorithms 
listed in Table 1 (Fig. 6).

Sum of optimisation output values to minimise

Input values : calibration parameters Output values : to minimise

Low-pass
frequency [Hz]

3

1

4

20

|FS median|
[frames]

|FO median|
[frames]

FS inter-centile
5-95% [frames]

FO inter-centile
5-95% [frames]

35 50 30 5 10 5 10

0 5 20 0 0 0 0 0
VZ

Threshold [%]
VY

Threshold [%]
VX

Threshold [%]

9 10 11 12 14 1513 16 178

9
18

31

8

Fig. 5  Parametric optimisation plot. Based on 6534 simulations on 819 C3D gait files, representing 10,910 gait events, four input calibration 
parameters (left side) led to find the lowest four output values (right side). Bullseyes help reading output values: for both Foot Strike and Foot Off, 
the closer the median and inter-centile values are to zero, the more accurate and precise the results
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Data were analysed by repeated measures ANOVA and 
associated post-hoc tests, using JASP®, version 0.19.1.0, 
with an α-value set at 5% (Table 2). In each case, the null 
hypothesis was rejected with a p-value lower than 0.001, 
so differences between each algorithm are significant. 
In order not to limit this quantitative analysis to mean 
and variance, we also performed bootstrapping with 
Matlab to evaluate the influence of the samples in the 
dataset [20]. The bootstrap method is a resampling pro-
cedure that uses data from a dataset to generate a sam-
pling distribution by repeatedly taking random samples 
from it, with replacement. This method is convention-
ally repeated a thousand times and results in the calcu-
lation of a 95% confidence interval around the values 

of interest, in this study, the lower whisker, median and 
upper whisker.

Thus, only the algorithm by [9] and the MC7* algorithm 
have a lower error variability than the inter-rater 
variability: ± 2.1 frames for Foot Strike and + 6.1/− 6.4 
frames for Foot Off. However, only MC7* fitted within a 
range of ± 2.1 frames for both foot strike and foot off.

Sensitivity analysis
Since motion analysis laboratories use different number 
of foot markers, we tested the Multi-Condition algorithm 
on the same dataset using several reduced markersets 
(Fig. 7).

Fig. 6  Error plots (min, lower quartile, median, upper quartile, max) for each algorithm from Table 1, estimating Foot Strike and Foot Off compared 
to rater expertise. The light green areas come from the inter-rater reliability evaluation (Fig. 4). Dark green areas are the Foot Strike specifications 
applied on Foot Off

Table 2  Quantitative statistics analysis from Fig. 6

p-values are calculated, from repeated measures ANOVA and associated post-hoc tests, on mean and variance (with an α-value set to 0.05). 95% confidence intervals 
are calculated, from bootstrap method, on lower whisker, median and upper whisker. Units are in frames. p-value* is the global one, while the others p-Value come 
from post-hoc tests. Results from bootstrap methods are displayed as Median [2.5% 97.5%] percentiles

Foot strike Foot off

Lower whisker Median  Upper whisker p-value Lower whisker  Median Upper whisker p-value

 Zeni et al. [5] − 7 [− 9 − 7] − 3 [− 3 − 3] 1 [1 4] < 0.001 − 3 [− 3 − 3] 1 [1 1] 5 [5 5] < 0.001

 Desailly et al. [4] − 8 [− 9 − 8] − 2 [− 2 − 2] 3 [3 4] < 0.001 − 4 [− 5 − 2] 1 [1 2] 7 [6 8] < 0.001

Ghoussayni et al. [7] − 7 [− 9 − 5] − 1 [− 1 − 1] 4 [3 7] < 0.001 − 6 [− 7 − 4] 0 [0 0] 5 [4 6] < 0.001

Bruening and Ridge [11] − 7 [− 8 − 7] − 1 [− 1 − 1] 4 [4 5] < 0.001 − 4 [− 4 − 4] 0 [0 0] 4 [4 4] < 0.001

Bonci et al. [6] − 6 [− 7 − 6] 0 [0 0] 5 [5 6] < 0.001 − 3 [− 3 − 3] 1 [1 1] 5 [5 5] < 0.001

O’Connor et al. [8] − 4 [− 7 − 4] 0 [0 0] 4 [4 6] < 0.001 − 6 [− 7 − 6] − 1 [− 1 0] 5 [5 6] < 0.001

Hsue et al. [10] − 4 [− 4 − 1] 4 [4 5] 12 [10 12] < 0.001 − 2 [− 2 − 2] 2 [2 2] 6 [6 6] < 0.001

Hreljac and Marshall [9] − 1 [− 6 − 1] 1 [1 1] 2 [2 7] < 0.001 − 2 [− 2 − 2] 2 [2 2] 6 [6 6] < 0.001

MC7* − 1 [− 2 − 1] 0 [0 0] 2 [2 3] < 0.001* − 2 [− 5 − 2] 0 [0 0] 1 [1 3] < 0.001*
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Similarly to the comparison with the algorithms from 
literature, data from Fig.  7 were analysed by repeated 
measures ANOVA and associated post-hoc tests, with an 
α-value set at 5% (Table 3). In each case, the null hypoth-
esis was rejected with a p-value lower than 0.001, so dif-
ferences between each markerset are significant, what 
could be explained by the size of the dataset (5 503 Foot 
Strike and 5 407 Foot Off) and a low related variance. 
Again, in order not to limit this quantitative analysis to 

mean and variance, we also performed bootstrapping on 
lower whisker, median and upper whisker.

Thus, the Heel and Hallux markers appeared to be essen-
tial for detecting Foot Strike and Foot Off, respectively. 
Similarly, an MC4* configuration with Heel, 5th metatar-
sophalangeal joint, 2nd metatarsophalangeal joint, and 
Hallux markers yielded the same results as MC7* (which is 
consistent as it covers the entire foot area on the ground). 
Finally, if only two markers can be placed on the foot, we 
recommend using Heel and Hallux markers.

Fig. 7  Error plots (min, lower quartile, median, upper quartile, max) for MC7* estimating Foot Strike/Off compared to rater expertise for each 
decreased marker set. The light green areas show the inter-rater reliability evaluation (Fig. 4). The dark green areas show the Foot Strike 
specifications applied to Foot Off

Table 3  Quantitative statistics analysis from Fig. 7

p-values are calculated, from repeated measures ANOVA and associated post-hoc tests, on mean and variance (with an α-value set to 0.05). 95% confidence intervals 
are calculated, from bootstrap method, on lower whisker, median and upper whisker. Units are in frames. p-value* is the global one, while the others p-value come 
from post-hoc tests. Results from bootstrap methods are displayed as Median [2.5% 97.5%] percentiles

Foot strike Foot off

Lower whisker Median Upper whisker p-value Lower whisker Median Upper whisker p-value

MC7* − 1 [− 2 − 1] 0 [0 0] 2 [2 3] < 0.001* − 2 [− 5 − 2] 0 [0 0] 1 [1 3] < 0.001*

MC6*
(no Hallux)

− 1 [− 2 − 1] 0 [0 0] 2 [2 3] < 0.001 − 8 [− 9 − 8] − 2 [− 2 − 2] 2 [2 4] < 0.001

MC6*
(no Heel)

− 3 [− 4 − 3] 2 [2 2] 8 [8 9] < 0.001 − 2 [− 5 − 2] 0 [0 0] 1 [1 3] < 0.001

MC4* − 1 [− 2 − 1] 0 [0 0] 2 [2 3] < 0.001 − 2 [− 5 − 2] 0 [0 0] 1 [1 3] < 0.001

MC2* − 1 [− 2 − 1] 0 [0 0] 2 [2 3] < 0.001 − 5 [− 5 − 5] 0 [0 0] 3 [3 3] < 0.001
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Discussion
Although the Multi-Condition algorithm fulfilled the 
specifications defined by the inter-rater reliability 
evaluation, some points still require discussion, such as 
the initial hypothesis, the use of the algorithm in gait 
conditions other than spontaneous and fast, the choice of 
a fixed low-pass filter frequency cut-off, and the size of 
the cohort.

As with each tested algorithm from the literature, 
some outliers were generated by MC7*. We hypothesised 
that the only times that foot marker velocities dropped 
below the identified thresholds was when a rigid link 
was established with the ground. However, some false 
positives occurred, particularly for Foot Strike, when 
the foot moves slowly backwards just before touching 
the ground. Increasing the cohort size in the future and 
rerunning the optimisation process should improve the 
parameter set, reducing false positive occurrences.

Motion analysis laboratories systematically evaluate 
spontaneous (and fast) gait conditions, considered as a 
gold standard, rather than more ecological walking tasks. 
Our study set three different thresholds for VX, VY, and 
VZ relative to the mean walking speed. These thresholds 
should continue to be effective for tasks such as obstacle 
stepping, where the main axis of motion is antero-
posterior. However, a new optimisation process should be 
conducted if the walking task has a larger medio-lateral 
component, such as turning or slaloming.

The initial steps in developing the Multi-Condition algo-
rithm led us to choose VX, VY, and VZ thresholds relative 
to the individual’s mean walking speed. Therefore, to set 
the low-pass frequency, we also tested a variable frequency 
adapted to each individual by applying a threshold of 90% 
or 95% to the signal energy contained in the vertical posi-
tion vector of the foot markers (the only one of the three 
position components that is necessarily cyclic due to the 
contact with the ground). However, the parametric opti-
misation process yielded slightly better outcomes (accu-
racy and precision) with a constant low-pass frequency. 
Although this approach may not be consistently reliable, 
we believe it warrants further detailed exploration.

Finally, although the Multi-Condition algorithm 
detected both Foot Strike and Foot Off more accurately 
than expert detection because of the associated inter-
rater variability, this result must be interpreted in the 
light of some limitations. The cohort was relatively small 
and was further reduced because of the introduction of 
the Hallux marker during the study. Even though we now 
exclusively use the Multi-Condition algorithm for the 
clinical detection of gait events, greatly limiting expert 
detection bias, it should be tested in different motion 
analysis laboratories, with larger and more diverse 
cohorts, and with different acquisition systems.

Perspectives
This work has many implications for clinical practice and 
future research.

The Multi-Condition algorithm was developed using kin-
ematic data obtained from a 10-metre instrumented walk-
way using an optoelectronic motion capture system and 
primarily operates using velocity data. Therefore, it should 
be adapted for ecological walking tasks involving acceler-
ometry, and it will be interesting to adapt this algorithm to 
work with data acquired from embedded equipment [21]. 
Additionally, and for the same reason, the application of the 
Multi-Condition algorithm could be extended to gait analy-
ses conducted on instrumented treadmills by incorporating 
the belt speed into the calculations.

As stated in the introduction, algorithms based on 
deep learning methods have also been developed for 
gait event detection. Although we believe that these 
methods could be relevant, they require a large and, 
above all, homogeneous database (i.e., similar age-
group and pathology), which is not representative of the 
people attending our laboratory. This is why we chose 
a more deterministic approach. However, although we 
proposed an algorithm based on the 3D components 
of the foot marker velocities, we also considered data 
based on marker position, velocity or acceleration, or 
any linear combination of these. Artificial intelligence 
processes might help to identify such potential data.

Conclusion
In this study, we developed a deterministic algorithm to 
objectively, accurately and precisely detect gait events, 
thereby limiting expert-rater bias in expert correction, 
which could lead to incorrect evaluation of spatiotem-
poral parameters, joint kinematics and kinetics. The 
approach involves considering the foot as only rigidly 
linked to the ground during the single stance phase and 
uses the 3D components of each foot marker.

We recommend adding a marker on the medial posi-
tion of the 1st interphalangeal joint (Hallux) (Fig. 1). If 
the biomechanical foot marker set includes only two 
markers, we recommend placing them on the calca-
neus and the Hallux. If four markers can be used, we 
recommend the 5th metatarsophalangeal joint, the 2nd 
metatarsophalangeal joint, the calcaneus, and the 1st 
interphalangeal joint.

To conclude, the Multi-Condition algorithm detects 
Foot Strike and Foot Off within a 3-frame range—bet-
ter than expert-rater variability—in a few seconds of 
calculation, regardless of the pathology or gait pat-
tern, even considering intra-individual variability. 
To promote adoption and ongoing testing, both the 
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Multi-Condition algorithm and the parametric opti-
misation routine is available as open-access resources.
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