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Abstract
Background  Brain-computer interface (BCI) technology can enhance neural plasticity and motor recovery in persons 
with stroke. However, the effects of BCI training with motor imagery (MI)-contingent feedback versus MI-independent 
feedback remain unclear. This study aimed to investigate whether the contingent connection between MI-induced 
brain activity and feedback influences functional and neural plasticity outcomes. We hypothesized that BCI training, 
with MI-contingent feedback, would result in greater improvements in upper limb function and neural plasticity 
compared to BCI training, with MI-independent feedback.

Methods  This randomized controlled trial included persons with chronic stroke who underwent BCI training 
involving functional electrical stimulation feedback on the affected wrist extensor. Primary outcomes included the 
Medical Research Council (MRC) scale score for muscle strength in the wrist extensor (MRC-WE) and active range of 
motion in wrist extension (AROM-WE). Resting-state electroencephalogram recordings were used to assess neural 
plasticity.

Results  Compared to the MI-independent feedback BCI group, the MI-contingent feedback BCI group showed 
significantly greater improvements in MRC-WE scores (mean difference = 0.52, 95% CI = 0.03–1.00, p = 0.036) and 
demonstrated increased AROM-WE at 4 weeks post-intervention (p = 0.019). Enhanced functional connectivity in 
the affected hemisphere was observed in the MI-contingent feedback BCI group, correlating with MRC-WE and 
Fugl-Meyer assessment-distal scores. Improvements were also observed in the unaffected hemisphere’s functional 
connectivity.
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Background
Upper limb impairments, which are common after 
stroke, have a significant impact on stroke survivors’ 
lives. Recent advancements in technologies, such as vir-
tual rehabilitation, rehabilitation robots, and non-inva-
sive brain stimulation, have enabled their use as adjunct 
or stand-alone therapies for upper-limb rehabilitation 
[1]. More recently, a brain-computer interface (BCI) sys-
tem, that captures central nervous system (CNS) activ-
ity and translates it into artificial signals, has been used 
to substitute, restore, or enhance CNS output [2]. BCI 
allows direct communication between the human brain 
and external devices, enabling control of external devices, 
such as computer or robotic devices, bypassing con-
ventional motor pathways. In upper-limb rehabilitation 
among persons with stroke, BCIs interpret the patient’s 
intention to move, aiding muscle stimulation or exter-
nal device control. Through repetitive learning, BCIs can 
facilitate neural plasticity and fundamental motor recov-
ery [3]. Several studies have demonstrated the beneficial 
effects of BCI training on motor function and neuroplas-
ticity during stroke rehabilitation [4, 5].

A BCI system continuously monitors brain signals and 
provides feedback or stimulation to the user based on 
brain signals across various processes such as data acqui-
sition, signal processing, feedback, adaptive training, 
and progress monitoring [4–6]. In the context of motor 
rehabilitation, reward feedback is provided only when the 
user imagines the desired movement, allowing the user to 
learn how to control the movement more effectively. The 
patient’s intention-driven feedback gradually creates a 
closed loop from intention to motor execution through-
out BCI training, becoming an integral part of motor 
learning. Therefore, a contingency between the neural 
correlates of motor intention and consequent feedback 
should be established in BCIs to reorganize the tar-
geted neural circuit, fundamentally leading to functional 
improvement.

Previous studies have demonstrated the favorable 
effects of this close connection between intention and 
feedback; however, there are inconsistencies in BCI sys-
tems and results of previous studies comparing motor 
imagery (MI)-contingent feedback (real-BCI) and BCI 
operated by MI-independent feedback (sham-BCI). Fro-
lov et al. [7] employed a BCI-controlled hand exoskel-
eton and demonstrated within-group improvements 

after real-BCI without directly comparing real-BCI and 
sham-BCI. Ramos-Murguialday et al. [8] compared real 
and sham-BCI using BCI-driven finger orthosis and 
demonstrated significant improvement in motor func-
tion, particularly in terms of the upper limb Fugl-Meyer 
assessment (FMA) scores in the real-BCI group com-
pared to those in the sham-BCI group. In addition, the 
improvements were associated with changes in the 
affected hand’s fMRI laterality index and electromyo-
graphic activity. Biasiucci et al. [9] compared real and 
sham-BCI using functional electrical stimulation (FES) 
feedback and demonstrated significant differences in 
the improvement of FMA, muscle strength of the wrist 
extensor, and functional connectivity in the affected 
hemisphere in the real-BCI group compared with that in 
the sham-BCI group.

recoveriX-PRO® (g.tec Medical Engineering GmbH, 
Austria) is a ready-to-use BCI system and comprises dif-
ferent features to strengthen closed-loops. First, it detects 
motor intention in different ways. recoveriX-PRO com-
pares brain activity between hemispheres during mental 
rehearsal of affected or unaffected (right or left) hand 
movements. This approach differs from previous meth-
ods that obtained signals from MI of the affected hand 
versus rest. Second, calibration is conducted in every ses-
sion before the BCI intervention, reflecting the variability 
of electrode position and electroencephalogram (EEG) 
electrode impedance. Third, FES is provided during cali-
bration, aiming to align more closely with motor inten-
tions during BCI training, as EEG signals are influenced 
by sensory feedback during actual BCI-FES training. 
Lastly, recoveriX-PRO provides visual feedback through 
animated upper extremities of an avatar in virtual reality 
and proprioceptive feedback by generating movement via 
FES. In contrast to traditional BCIs, our study used a vir-
tual reality-based game task. We believe that virtual real-
ity enhances motor performance by boosting motivation 
and active engagement, which facilitate BCI participation 
[10]. We hypothesized that close contingent connection 
between MI-induced brain activity and consequent sen-
sory feedback is essential in BCI systems for functional 
improvement and neural plasticity and that this contin-
gency should be confirmed for individual BCI systems, 
considering their unique characteristics. Therefore, this 
study aimed to compare the effects of the BCI system 
operated by MI-contingent feedback BCI group, versus 
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the effects of BCI operated by MI-independent feedback 
BCI group on distal upper limb function and brain activ-
ity in persons with chronic stroke with weak wrist exten-
sor strength.

Methods
Study design
This double-blinded, parallel-group, randomized con-
trolled trial was performed at a single rehabilitation 
hospital from August 2020 to December 2022. A com-
puter-generated randomization table randomly allocated 
participants to the MI-contingent feedback BCI group or 
MI-independent feedback BCI group in a 1:1 ratio. The 
participants and assessors were blinded to the groups 
to which the participants were allocated. A CONSORT 
diagram is shown in Fig. 1. This study was approved by 
the Institutional Review Board of the Rehabilitation 
Hospital (NRC-2020-01-007) and registered at CRIS 
(KCT0009013). Participants provided informed consent 
before enrolment in the study.

Participants
Participants were recruited from a rehabilitation hospi-
tal, adhering to specific inclusion and exclusion criteria. 
Inclusion criteria comprised individuals who: (1) had 
hemiplegia due to a first-ever stroke with unilateral hemi-
sphere lesions; (2) were in the chronic stage of stroke 
(≥ 6 months post-onset); (3) exhibited Medical Research 
Council (MRC) scale scores indicating affected wrist 
extensor muscle weakness (≤ 2); and (4) were aged > 19 
years. Exclusion criteria included: (1) conditions hinder-
ing EEG signal recording, such as scalp wounds or metal 
implants; (2) wrist flexor spasticity rated ≥ 2 on the modi-
fied Ashworth scale (MAS); (3) cognitive impairments or 
aphasia affecting comprehension; (4) neurological or psy-
chiatric disorders unrelated to stroke; (5) musculoskeletal 
issues or severe pain in the affected upper limb affect-
ing intervention; (6) hemispatial neglect; and (7) uncon-
trolled medical conditions.

Given the lack of prior reports on the differential 
effects of MI-contingent feedback and MI-independent 

Fig. 1  CONSORT flow diagram of participant recruitment
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feedback with identical BCI systems, determining a 
precise sample size beforehand was unfeasible. Conse-
quently, we set a sample size of 12 participants per arm, 
totaling 24, which met the minimum recommended sam-
ple size for pilot trials. To account for a potential attri-
tion rate of 10%, we targeted 27 participants for this pilot 
study [11].

BCI-FES system
The BCI system utilized in this study was the recoveriX-
PRO, a non-invasive, neurofeedback-based stroke reha-
bilitation system. The recoveriX-PRO comprises an EEG, 
FES, and a computer screen projecting virtual hands. 
Sixteen channels (FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, 
C6, CP3, CP1, CPz, CP2, CP4, and Pz of the international 
10–20 systems) of the EEG signal recording system were 
employed, sampling at 256 Hz and digitally filtered with 
a 0.5–30  Hz bandpass filter. The ground and reference 
electrodes were positioned over the forehead (FPz) and 
right earlobe, respectively. Spatial filtering was conducted 
using the common spatial pattern method to optimize 
variance for one MI category while minimizing it for the 
other. Subsequently, the spatially filtered data under-
went classification through linear discriminant analysis. 
A comprehensive description of the signal processing 
methods can be found elsewhere [6].

One pair of FES electrodes was positioned on the skin 
over both forearms’ wrist extensors. The frequency of 
the FES devices (g.Estim FES, g.tec Medical Engineer-
ing GmbH, Austria) was set at 50  Hz, with a rectangu-
lar pulse width of 300 µs. The current amplitude was 
adjusted individually to ensure contraction of the affected 
wrist extensor without causing discomfort. Visual feed-
back was provided in the form of an embodied represen-
tation, where the bilateral forearms and hands of a virtual 
avatar were displayed on a monitor. The recoveriX-PRO 
system seamlessly acquired, analyzed, and interpreted 

EEG signals associated with MI. It then activated the FES 
system when the participant imagined movement on the 
instructed side (Fig. 2). Utilizing the recoveriX-PRO sys-
tem involves integrating cortical and peripheral activities, 
thereby establishing a closed loop between brain sig-
nals during imagined movements and contingent visual 
and proprioceptive feedback. This process aids patients 
in learning to imagine or execute desired movements 
effectively.

BCI intervention
The recoveriX-PRO interventions consisted of 240 tri-
als of MI tasks involving both hands, divided into three 
runs of 80 trials each (refer to Fig.  3). Each run com-
prised two sets of 40 trials, separated by a 2-min break. 
An additional 3–5  min were allotted for the inter-run 
break. A trial commenced with an attention beep at 0 s. 
Subsequently, at 2 s, an arrow indicating the hand (“left” 
or “right”) for which MI was expected appeared on the 
monitor, accompanied by verbal instructions. Par-
ticipants were instructed to imagine wrist dorsiflexion 
according to the system’s instruction, which alternated 
between “left” and “right” in a semi-random order. Dur-
ing the feedback phase (from 3.5  s to 8  s), FES and the 
virtual avatar were activated. The recoveriX-PRO inter-
ventions encompass two types of runs: calibration and 
rehabilitation runs. In the rehabilitation run, feedback 
was triggered only when the BCI system detected MI of 
the correct hand (MI-contingent feedback). Conversely, 
in the calibration run, feedback was consistently acti-
vated, irrespective of MI (MI-independent feedback). The 
feedback was updated at a rate of five times per second.

At 8 s, a relaxation signal indicated the end of the task 
period (MI), which lasted 6 s. The interval between trials 
varied randomly within a range of 1 s.

All participants underwent 20 sessions of 60-min BCI 
intervention, administered by research physical thera-
pists, 5 days a week over 4 weeks. The BCI intervention 
session comprised one calibration run followed by two 
rehabilitation runs, where participants received MI-con-
tingent feedback-based BCI intervention (Fig.  3A). In 
contrast, the MI-independent feedback group interven-
tion session involved three consecutive calibration runs 
without any rehabilitation runs, providing participants 
with MI-independent feedback irrespective of their MI 
(Fig. 3B). Patients in the MI-independent feedback group 
used the same hardware, followed the same task instruc-
tions, and performed the same MI task of extending the 
affected wrist as those in the BCI group. Both groups 
had the same setup, with interventions starting based on 
the initial Calibration MI. The MI-contingent feedback 
group received FES only if it matched the Calibration 
MI, while the MI-independent feedback group received 
FES regardless of MI. Participants performed the MI task Fig. 2  The recoveriX PRO training system
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while seated, wearing the EEG cap, and observing the 
virtual avatar’s forearm and hand on a screen. The inter-
vention and assessments were conducted in a dedicated, 
tranquil research room to facilitate task concentration. 
Additionally, all participants received 30 min of conven-
tional therapy for the affected upper limb 5 days a week.

Outcome assessment
Clinical and neurophysiological outcomes were evaluated 
by an independent team comprising a research physi-
cal therapist and a physiatrist who were blinded to the 
group allocation. Clinical assessments were conducted at 
baseline (W0), after 2 weeks (W2), and at the end of the 
4-week intervention period (W4), while neurophysiologi-
cal outcomes were recorded at W0 and W4.

Clinical outcomes
We assessed baseline demographics of participants, 
including sex, age, stroke type, hemiparetic side, and 
time since stroke onset. Our evaluation aimed to cover 
all domains of upper limb function outlined in the Inter-
national Classification of Functioning, Disability, and 
Health (ICF): impairment, activity, and participation. For 
body function/structure, we recorded outcomes such as 
the MRC scale for muscle strength in the wrist exten-
sor (MRC-WE; scored 0–5), active range of motion in 
wrist extension (AROM-WE), and MAS for wrist flexor 
spasticity (MAS-WF; scored 0–4), along with the FMA. 
Activity and participation were assessed using the Box 
and Block Test (BBT) and the Stroke Impact Scale (SIS), 
respectively [12]. The primary outcome was changes in 
the MRC-WE and AROM-WE at W4, the targeted out-
comes of our intervention.

The FMA tool is used to evaluate motor performance 
in persons with stroke, with higher scores indicating bet-
ter motor function [13, 14]. We examined four specific 
FMA variables: FMA-total (0–66), FMA-distal (0–24), 
FMA-wrist (0–10), and FMA-hand (0–14). The BBT 
measures gross manual dexterity by counting the num-
ber of blocks an individual can transfer between sections 
within one minute. To assess health-related quality of 
life (HRQoL), we utilized version 3.0 of the SIS, a self-
reported questionnaire tailored for persons with stroke. 
We focused on SIS domains relevant to upper limb func-
tion: hand function, physical and instrumental activities 
of daily living (ADLs/IADLs), and social participation 
[15, 16]. MI accuracy is an indicator of how well a partici-
pant is adapting to a BCI system. Each participant under-
went 20 sessions, and MI accuracy was recorded in each 
session. The mean MI accuracy over the 20 sessions was 
then calculated to determine the mean MI accuracy for 
each group.

Resting-state EEG measurements
Resting-state EEG data were collected to assess changes 
in functional connectivity in the motor area pre- and 
post-intervention. EEG recordings took place during sep-
arate sessions at W0 and W4. Participants were seated 
comfortably and instructed to relax without focusing on 
any particular thoughts. Data were recorded at a sam-
pling frequency of 256 Hz using a 32-channel g. nautilus 
system (g.tec Medical Engineering GmbH, Austria). The 
32 electrodes were distributed across the scalp based on 
the extended 10–20 international system using an elastic 
electrode cap, with the reference channel positioned on 
the right earlobe of each participant. We acquired EEG 

Fig. 3  The recoveriX PRO session
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from participants with their eyes closed and open at rest 
for 5 min twice, respectively, totaling 20 min of resting-
state data.

Functional connectivity analysis using resting-state EEG
To analyze the changes in functional connectivity in the 
motor area before and after the intervention, the eyes-
closed resting-state EEG data was first preprocessed as 
follows: The raw EEG data were bandpass-filtered using 
a 3rd-order Butterworth filter with cutoff frequencies of 
1 and 50 Hz, and then segmented into 1-s epochs with-
out overlaps [17]. Epochs containing significant artifacts 
exceeding a ± 120 µV signal threshold were removed, and 
30 artifact-free epochs were randomly selected for each 
participant. Among the 25 participants, one participant’s 
data from the MI-independent BCI group was excluded 
due to insufficient artifact-free epochs (< 30). Thus, pre-
processed EEG data from 24 patients (MI-contingent 
feedback BCI group = 12, MI-independent feedback BCI 
group = 12) were utilized for functional connectivity 
analysis. EEG channels were inverted for individuals with 
right-hemisphere lesions to ensure consistent data analy-
sis across patients, aligning the lesion consistently over 
the left hemisphere in all the participants. For example, 
electrode C3* was assigned to cover the affected hemi-
sphere, while electrode C4* was designated for the unaf-
fected hemisphere. Partial directed coherence (PDC) [18] 
is a statistical measure used to determine the direction 
and strength of interactions between time series in the 
frequency domain, particularly in the context of neural 
data analysis such as EEG. PDC is derived from multi-
variate autoregressive (MVAR) models, which allows it 
to identify the direct influence of one variable on another 
while controlling for the effect of all other variables in the 
system. In this study, Partial directed coherence (PDC), a 
representative, effective functional connectivity measure, 
was employed to assess changes in directed functional 
connectivity pre- and post-intervention [9, 19]. PDC was 
calculated for each of the 30 pre-processed EEG epochs 
using a 6th-order multivariate autoregressive model 
implemented in the Hermes Matlab toolbox [20]. The µ 
(10–12 Hz) and β (18–24 Hz) bands, which are the fre-
quencies most relevant to motor control. were used for 
PDC calculation [21]. Subsequently, PDC values were 
normalized to the range of 0–1 and averaged across all 30 
epochs for each participant.

Transcranial magnetic stimulation (TMS)-induced motor 
evoked potential (MEP)
Cortical excitability was measured using a TMS (Mag-
Pro stimulator, MagVenture, Lucernemarken, Denmark) 
at W0 and W4. Participants were seated comfortably in a 
reclining armchair with their hands pronated on a cush-
ion. We used a figure-of-8 coil to stimulate the motor 

cortex with the coil handle oriented 45° posterior to the 
midline to ensure the electromagnetic current flowed 
perpendicularly to the central sulcus [22]. Electromyo-
graphic signals were recorded using an active surface 
electrode placed on the contralateral first dorsal inter-
osseous muscle, while reference and ground electrodes 
were positioned on the index finger proximal interpha-
langeal joint and over the wrist, respectively. The optimal 
scalp location (hotspot) was determined as the site elicit-
ing the largest MEP amplitude with the lowest stimula-
tion intensity [23].

We examined cortical excitability using MEPs and rest-
ing motor threshold (RMT). The RMT (%) was the low-
est stimulator intensity that could elicit MEPs with an 
amplitude of at least 50 microvolts in at least five out of 
10 consecutive trials [23]. MEP amplitude was evaluated 
at 120% of the TMS intensity necessary to elicit RMT, 
and we measured the average peak-to-peak amplitudes of 
MEP from 10 consecutive MEP sweeps.

Statistical analysis
We employed a linear mixed model analysis for repeated 
measurements to compare intervention effects within 
and between groups across all time points. The statisti-
cal model included the outcomes as the dependent vari-
able, with group (between-subject factor; MI-contingent 
feedback BCI or MI-independent feedback BCI), time 
(within-subject factor), group × time interactions, and 
baseline value of the outcome as fixed effects. Each par-
ticipant’s intercept was considered a random intercept 
in the model. Group × time interactions were utilized 
to estimate intervention effects at all time points, while 
within-group time effects were assessed in each group. 
Results are presented as actual values and mean adjusted 
differences in outcomes between the two groups, with 
95% confidence intervals (CI). Additionally, we examined 
correlations between primary outcomes (MRC-WE and 
AROM-WE) and PDC from premotor to motor in the µ 
and β frequency bands using repeated measures corre-
lation (rmcorr) to identify linear relationships in paired 
data collected through repeated measurements. The 
analysis employed R version 4.3.2 ​(​​​h​t​t​p​:​/​/​w​w​w​.​r​-​p​r​o​j​e​c​t​
.​o​r​g​​​​​) using the lme4 and rmcorr package [24, 25]. MEP 
data were not statistically analyzed because MEP was 
observed in only five participants.

Results
Clinical outcomes
This study included a total of 27 participants with 
chronic stroke. Among these, two participants in the MI-
contingent feedback BCI group dropped out because of 
transfer to another hospital. Consequently, 25 partici-
pants (12 patients in the MI-contingent feedback BCI 
group, 13 patients in the MI-independent feedback BCI 
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group) were examined (Fig. 1). The participants’ baseline 
demographic and clinical characteristics are presented in 
Table 1, revealing no significant differences between the 
groups.

Figure 4; Table 2 illustrate the changes in primary out-
comes (MRC-WE and AROM-WE) from W0 to W4. The 
MI-contingent feedback BCI group exhibited significant 
improvements in MRC-WE at W4, as evidenced by the 
interaction effect over time, in comparison to the MI-
independent feedback BCI group (p = 0.036). Specifically, 
the MRC-WE score was 0.52 higher in the MI-contingent 
feedback BCI group than in the MI-independent feed-
back BCI group (95% CI: 0.03–1.00). Moreover, signifi-
cant improvements in MRC-WE and AROM-WE were 
observed solely in the MI-contingent feedback BCI group 
at W4 compared to W0 (p = 0.002; p = 0.019, respectively).

Table  2 presents secondary outcome measures with 
estimated mean differences between groups across time 

from a linear mixed model. No time × group interac-
tion was noted for FMA (FMA-total, FMA-distal, and 
FMA-hand). However, the MI-independent feedback BCI 
group demonstrated significant improvements in FMA-
total (p = 0.005), FMA-distal (p = 0.020), and FMA-hand 
(p = 0.009) at W4 compared to W0, whereas FMA did not 
improve within the MI-contingent feedback BCI group. 
Additionally, there were no significant time × group inter-
action or main effects of time for variables other than 
those described above: SIS, MAS-WF, and BBT. Further-
more, the t-test for independent samples comparing the 
average MI accuracy between the two groups showed no 
statistically significant difference (p = 0.486). The experi-
mental group had a mean MI accuracy of 71.23 ± 9.04, 
while the control group had a mean MI accuracy of 
68.20 ± 12.30. No adverse events were reported.

Neurophysiological outcomes
Figure  5 illustrates the changes in PDC values in both 
the groups (Additional File 1). Significant time × group 
interactions were observed for effective connectiv-
ity in the ipsilesional premotor area for the β frequency 
band (FC2*→FC6* PDC: p = 0.005 and FC6*→FC2* 
PDC: p = 0.014). The MI-contingent feedback BCI group 
exhibited enhancement in the ipsilesional premotor 
area (β-band FC2*→FC6* PDC: p = 0.016) and the con-
tralesional premotor area to the motor area (µ-band 
FC5*→C3* PDC: p = 0.017; β-band FC5*→C3*: p = 0.012). 
In contrast, the MI-independent feedback BCI group did 
not display significant changes. Additionally, a repeated 
measures correlation analysis revealed a significant cor-
relation between the change of β-band FC2*→FC6* PDC 
value and MRC-WE (r = 0.608, p = 0.027), and between 
the β-band FC6*→FC2* PDC value and FMA-distal 
(r = 0.568, p = 0.043) in the MI-contingent feedback BCI 
group (Fig. 6). Moreover, a repeated measures correlation 

Table 1  Participants’ demographic data
MI-contingent BCI 
group (n = 12)

MI-inde-
pendent 
BCI group 
(n = 13)

Sex (Male/Female) 10/2 9 /4
Age 49.0 ± 16.9a 46.0 ± 12.8a

Affected brain lesion (right/left) 6/6 10/3
Type of stroke (hemorrhage/
infarction)

7/5 9/4

Onset time (month) 18.2 ± 16.2a 22.2 ± 23.4a

FMA 29.9 ± 12.0a 33.5 ± 11.1a

MRC-WE 1.1 ± 1.0a 1.2 ± 0.8a

Modified Ashworth wrist flexor 0.4 ± 0.8a 0.1 ± 0.3a

MEP (positive/negative) 3/9 2/11
aMean ± Standard deviation

BCI, brain-computer interface; FMA, Fugl-Meyer assessment; MRC-WE, muscle 
strength in the wrist extensor; MEP, motor evoked potential

Fig. 4  Changes in MRC-WE and AROM-WE from W0 to W4. MRC-WE, Medical Research Council scale score for muscle strength in the wrist extensor; 
AROM-WE, active range of motion in wrist extension
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unadjusted mean ± SD adjusted difference (95% CI) p-value1

MI-contingent BCI MI-independent BCI
MRC-WE
W0 1.083 ± 0.996 1.230 ± 0.832
W2 1.250 ± 1.055 1.230 ± 0.832 0.17 -0.32–0.65 0.495
W4 1.833 ± 1.114 1.461 ± 1.050 0.52 0.03–1.00 0.036
(W2) p-value2 0.669 1.000
(W4) p-value2 0.002 0.294
AROM-WE
W0 4.166 ± 9.962 5.000 ± 6.123
W2 9.166 ± 13.113 6.923 ± 9.022 3.08 -4.27–10.42 0.406
W4 12.916 ± 15.144 8.461 ± 9.439 5.29 -2.06–12.63 0.155
(W2) p-value2 0.231 0.672
(W4) p-value2 0.019 0.290
FMA-total
W0 29.917 ± 11.950 33.538 ± 11.095
W2 31.916 ± 12.964 33.923 ± 11.243 1.62 -1.03–4.26 0.227
W4 31.333 ± 14.047 36.307 ± 11.397 -1.35 -4.00–1.29 0.311
(W2) p-value2 0.175 0.879
(W4) p-value2 0.402 0.005
FMA-distal
W0 4.333 ± 5.123 6.308 ± 4.785
W2 5.250 ± 4.845 6.846 ± 5.129 0.38 -1.40–2.16 0.673
W4 5.416 ± 5.664 8.076 ± 5.529 -0.69 -2.47–1.10 0.445
(W2) p-value2 0.357 0.655
(W4) p-value2 0.244 0.020
FMA-wrist
W0 0.833 ± 2.588 1.462 ± 2.025
W2 1.333 ± 2.708 1.538 ± 1.853 0.42 -0.49–1.33 0.357
W4 1.250 ± 2.895 2.153 ± 2.409 -0.28 -1.19–0.64 0.548
(W2) p-value2 0.156 0.976
(W4) p-value2 0.266 0.163
FMA-hand
W0 3.500 ± 2.939 4.846 ± 4.120
W2 3.917 ± 2.644 5.307 ± 4.190 -0.04 -1.27–1.18 0.942
W4 4.166 ± 3.537 5.922 ± 4.251 -0.41 -1.63–0.81 0.505
(W2) p-value2 0.712 0.359
(W4) p-value2 0.428 0.009
MAS-WF
W0 1.333 ± 1.230 5.692 ± 7.674
W2 1.416 ± 0.900 5.538 ± 7.456 0.31 -0.36–0.98 0.352
W4 1.666 ± 1.073 6.153 ± 8.214 0.56 -0.11–1.23 0.097
(W2) p-value2 0.958 0.354
(W4) p-value2 0.519 0.354
BBT
W0 2.083 ± 5.107 5.692 ± 7.674
W2 2.666 ± 6.242 5.538 ± 7.456 0.74 -0.52–1.99 0.246
W4 2.916 ± 6.459 6.153 ± 8.214 0.37 -0.89–1.63 0.557
(W2) p-value2 0.229 0.952
(W4) p-value2 0.060 0.647
SIS-hand function
W0 12.917 ± 23.496 16.153 ± 19.273
W2 12.916 ± 29.034 17.692 ± 17.513 -1.54 -14.69–11.61 0.816
W4 5.833 ± 11.645 18.076 ± 20.056 -9.01 -22.15–4.14 0.176

Table 2  Linear mixed model analysis of outcomes
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Fig. 6  Repeated measures correlation analysis of the associations of changes in β-band and µ-band with MRC-WE and FMA-distal in the two groups. 
MRC-WE, Medical Research Council (MRC) scale score for muscle strength in the wrist extensor; FMA, Fugl-Meyer assessment

 

Fig. 5  Significant PDC values for the ipsilesional hemisphere and contralateral hemisphere in both groups. PDC, partial directed coherence

 

unadjusted mean ± SD adjusted difference (95% CI) p-value1

MI-contingent BCI MI-independent BCI
(W2) p-value2 1.000 0.927
(W4) p-value2 0.391 0.889
SIS-ADL/IADL
W0 68.333 ± 20.871 70.000 ± 18.568
W2 73.125 ± 17.060 74.038 ± 12.891 0.75 -11.58–13.08 0.903
W4 68.333 ± 18.163 65.192 ± 18.887 4.81 -7.52–17.14 0.439
(W2) p-value2 0.480 0.657
(W4) p-value2 1.000 0.554
SIS-social participation
W0 45.325 ± 31.000 39.915 ± 19.046
W2 54.966 ± 24.941 49.061 ± 23.751 0.50 -20.21–21.20 0.961
W4 56.266 ± 27.703 38.953 ± 26.549 11.90 -8.80–32.61 0.239
(W2) p-value2 0.372 0.415
(W4) p-value2 0.284 0.989
1 p-values for group × time interactions
2 p-values for time effects

BCI, brain-computer interface; FMA, Fugl-Meyer assessment; MAS, modified Ashworth scale; WF, wrist flexor

Table 2  (continued) 
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analysis indicated a significant correlation between the 
change of µ-band C3*→FC5* PDC value and FMA-distal 
(r = 0.569, p = 0.042) in the MI-independent feedback BCI 
group.

Figure 7 illustrates individual data for five participants 
(three from the MI-contingent feedback BCI group and 
two from the MI-independent feedback BCI group) who 
exhibited MEP. RMT data indicated a decrement in four 
participants, while one participant in the MI-indepen-
dent feedback BCI group showed no change after the 
intervention. MEP data revealed improvement in four 
participants, but one participant in the MI-independent 
feedback BCI group exhibited a decrement in MEP after 
intervention.

Discussion
In this double-blinded randomized controlled trial, we 
observed that the MI-contingent BCI group outper-
formed the MI-independent BCI group in primary out-
comes (MRC-WE) among persons with chronic stroke. 
The MI-contingent BCI and MI-independent BCI groups 
improved from 1.08 to 1.83 and from 1.23 to 1.46, respec-
tively, after 4 weeks of BCI intervention. This superior-
ity of MI-contingent BCI over MI-independent BCI was 
consistent with a previous study, wherein 6 weeks of FES-
based BCI improved MRC-WE from 1.43 to 2.57 in the 
MI-contingent BCI group and from 1.31 to 1.62 in the 
MI-independent BCI group [9]. AROM-WE, another pri-
mary outcome, also improved in the MI-contingent BCI 
group, but not in the MI-independent BCI group.

These clinical improvements coincided with changes 
in functional connectivity. Effective connectivity in the 
premotor area of the affected hemisphere, as well as con-
nectivity from the premotor area to the motor area in 
the unaffected hemisphere, improved significantly only 
in the MI-contingent BCI group. Specifically, a signifi-
cant time x group interaction in PDC-based functional 
connectivity was observed in the ipsilesional premotor 

area in the MI-contingent BCI group, but not in the MI-
independent BCI group. Additionally, functional con-
nectivity enhancements were evident in the ipsilesional 
premotor area and from the contralesional premotor to 
the motor area solely in the MI-contingent BCI group. 
This enhancement in ipsilesional functional connectiv-
ity indicates an upsurge in motor neuron excitability 
corresponding to desired movements, eliciting sufficient 
voluntary action potential for motor execution, aligning 
with previous findings showing robust desynchronized 
activity in the ipsilesional hemisphere with MI-based 
BCI [5, 9]. Furthermore, improvements in contralesional 
hemisphere connectivity throughout the MI-contingent 
BCI suggest that BCI facilitated complex bilateral brain 
activity contributing to motor recovery in persons with 
chronic stroke [26–28]. These improvements, observed 
exclusively in the MI-contingent BCI group, suggest that 
real-BCI facilitated neuronal plasticity, as functional con-
nectivity derived from PDC could capture causal rela-
tionships following neurological interventions [5, 29].

Crucially, the correlation between the change in ipsile-
sional connectivity and the improvement in MRC-WE 
and FMA-distal within the MI-contingent BCI group 
confirms that real-BCI induces plastic changes in the 
brain, facilitating functional enhancements, consistent 
with prior findings where BCI-FES induced functional 
improvements associated with brain network connec-
tivity [9, 30]. Similarly, the consistent improvement 
observed in RMT and MEP findings in the MI-contin-
gent BCI group contrasts with the either deteriorated or 
unchanged outcomes in the MI-independent BCI group. 
While this suggests that MI-contingent BCI may affect 
the corticospinal tract, caution is warranted due to the 
limited availability of MEP data, which were only acces-
sible for five participants. Thus, when considering the 
neurophysiological findings, it can be inferred that MI-
contingent BCI drives clinical improvements by initiat-
ing brain changes and subsequent modifications in the 

Fig. 7  Individual RMT and MEP data for the two groups. RMT, resting motor threshold; MEP, motor evoked potential
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motor pathway from the brain to the end-effector. Pre-
vious studies have indicated that contingency is critical 
to improve the effects of interventions such as FES or 
robots [8, 9]. MI-contingent real-time feedback facilitates 
the acquisition of the motor strategy and promotes long-
term retention of the motor task [31]. Therefore, with an 
MI-contingent BCI, individuals may develop the ability 
to modulate the brain’s oscillatory activity triggered by 
MI or motor attempts. This skill is honed through imme-
diate and precise somatosensory feedback, potentially 
establishing a new sensorimotor loop by strengthening 
the associative connection between MI and feedback, 
consistent with Hebbian plasticity principles.

Meanwhile, our findings regarding the FMA differed 
from previous studies where BCI significantly influ-
enced the outcomes of FMA [7–9]. In our MI-contingent 
BCI group, we did not observe statistically significant 
improvements, whereas the MI-independent BCI group 
demonstrated significant within-group enhancements in 
the FMA. This disparity may stem from differences in the 
feedback mechanism. Unlike previous studies in which 
the MI-independent BCI did not provide feedback upon 
MI failure, our MI-independent BCI group consistently 
received FES regardless of MI success. Consequently, the 
MI-independent BCI group underwent more FES repeti-
tions, as they always received stimulation regardless of 
MI accuracy, unlike the MI-contingent BCI group, which 
received FES only upon successful MI. Additionally, our 
MI-independent BCI group may have experienced a 
higher magnitude of the placebo effect compared to the 
sham-BCI groups in previous studies, as participants 
may have erroneously believed they were receiving real 
BCI intervention. We believe that these findings also 
influenced the significant correlation observed between 
the change in µ-band C3*→FC5* PDC value and FMA-
distal in the MI-independent feedback BCI group. Fur-
thermore, certain FMA items, such as mass flexion and 
grasp, were irrelevant to our BCI interventions.

Our BCI system utilized FES as a feedback mechanism. 
Recent systematic reviews have highlighted that only FES 
triggered by BCI significantly impacts motor function, 
unlike robot-assisted or virtual visual feedback interven-
tions [32, 33]. FES delivers sensory feedback regarding 
joint position and muscle tension, thereby refining partic-
ipants’ movements within the feedback loop and enhanc-
ing their awareness of movement, ultimately improving 
cortical excitability [34]. Moreover, our FES targeted 
the wrist extensors, simplifying task comprehension for 
participants and facilitating learning through repetitive 
movements. This simple approach complements a simple 
bottom-up strategy, effectively establishing a meaning-
ful closed loop when combined with motor imagination, 
which represents a top-down approach.

Previous studies have reported that one of the effects 
of BCI is to improve the quality of life (QoL) [5, 35, 36]. 
Sinha et al. [35] demonstrated statistically significant 
improvements in specific indicators of SIS following 
BCI application in persons with stroke. Similarly, the 
present study also predicted the effectiveness of BCI 
intervention using SIS, which was used as a QoL indi-
cator. However, statistically significant changes were 
not observed in both the MI-contingent BCI group and 
the MI-independent BCI group. It is a clinically known 
fact that improvements in motor function do not always 
mean improvements in independence and performance 
of ADL. Zanona et al. [37] suggested that functional 
improvement does not necessarily lead to improvements 
in ADL. Moreover, a study showed that FMA improved 
in persons with chronic stroke without any changes in 
ADL [38]. Therefore, whether improvements in upper 
arm movements can be beneficial for performing ADL 
remains questionable. A randomized controlled trial 
applying BCI for persons with upper limb stroke showed 
that outcomes measured by SIS may vary depending 
on the stroke severity and chronicity [39]. Among the 
stroke subjects in our study, the experimental and control 
groups had average onset times of 18.2 and 22.2 months, 
respectively; thus, the target population was persons 
with chronic stroke. Subsequent research may need to 
consider stroke onset and severity when assessing QoL. 
Briefly, the improvement in wrist function did not trans-
late into improvements in other outcomes. The interven-
tion in our study did not involve task-specific functional 
training which might explain the observed outcomes. 
Many participants had severe impairments and limited 
distal function and, despite functional improvements, 
did thus not show improvements in FMA, BBT, or QoL 
measures.

This study has some limitations. First, the sample size 
was not determined based on prior research findings. 
This challenge arose due to the variability in BCI sys-
tems, each possessing unique characteristics in acquir-
ing brain signals and delivering neurofeedback. Second, 
our study exclusively enrolled persons with chronic 
stroke, overlooking the potential plasticity observed in 
the early phases of stroke. Future investigations should 
extend to include patients in the early stages of stroke to 
capture the full spectrum of neuroplastic changes. Third, 
we were unable to compare the effects of BCI based on 
stroke lesion location and size because the sample size 
was too small to conduct meaningful subgroup analy-
sis. Future research should continue to investigate this 
aspect. Finally, participants in our study exhibited severe 
impairments, hindering the attainment of clinically sig-
nificant functional improvements and reliable MEP data 
crucial for understanding the function of the descend-
ing corticospinal tract. Therefore, future studies should 
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consider recruiting patients with mild to moderate stroke 
severity to broaden the applicability of BCI interven-
tions and deepen our understanding of their underlying 
mechanisms.

Conclusions
This study highlights the differential impacts of MI-con-
tingent and MI-independent BCI training on upper limb 
rehabilitation for individuals with chronic stroke. MI-
contingent BCI demonstrated significant improvements 
in wrist extensor function, specifically in MRC-WE and 
AROM-WE, highlighting its efficacy in targeting task-
specific impairments. On the other hand, the MI-inde-
pendent group showed superior outcomes in improving 
motor control, coordination, or the ability to perform 
specific movements, as evidenced by larger decreases 
in FMA scores. We believe that these findings were also 
influenced by the effects of FES and repetitive training. 
Importantly, the observed changes in EEG patterns dif-
fered between the two interventions, suggesting that 
both were effective, albeit through distinct mechanisms.

Additionally, it is important to consider the role of 
chronicity in these outcomes, as the chronic stage of 
stroke recovery may limit neural plasticity and func-
tional reorganization. To address this, ongoing research 
is investigating the efficacy of BCI-based interventions 
in patients with subacute stroke, where the potential 
for recovery may be greater. These studies are expected 
to provide deeper insights into the fundamental mecha-
nisms underlying BCI effectiveness and its potential to 
optimize rehabilitation strategies during various stages of 
stroke recovery.
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