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Abstract
Background  Lower limb amputation is a disabling condition with serious psychological, physical, and functional 
consequences. The adaptation of a prosthetic device can either mitigate or exacerbate these effects. Although many 
individuals receive lower limb prostheses, rejection rates remain high. Furthermore, while numerous objective and 
quantitative methods are available to assess the interface between the residual limb and the prosthetic socket, as well 
as the device performance, prosthetic fitting largely relies on prosthetists’ observation and expertise. Accordingly, this 
review describes the most commonly employed methods for evaluating prosthetic fitting, emphasizing frequently 
used combinations of tools, devices, procedures, and tests for characterizing residual limbs and clinical outcomes, 
which indirectly contribute to prosthetic fitting evaluation.

Main body  In July 2023, searches were conducted across the Taylor & Francis, SpringerLink, Sage, ScienceDirect, and 
Scopus databases, focusing on research papers, case reports, and technical briefs published between 2011 and 2023. 
Studies were selected by four reviewers, and any discrepancies were resolved through group discussions. The Rayyan 
tool was employed to ensure that the retrieved publications evaluated residual limb variables involved in prosthetic 
fitting. The predominant methods for assessing lower-limb prosthetic fitting include mobility evaluation, gait analysis, 
measurement of physical variables, and stability assessment. Functional tests and self-report questionnaires, which do 
not require specialized equipment or great expertise, are the most widely utilized techniques.

Conclusions  The results demonstrate that, within clinical practice, mobility evaluation is the primary predictor 
of prosthetic fitting. Since methodologies for measuring more specific variables are often restricted to laboratory 
settings, future studies should analyze factors that could enable their implementation in clinical contexts.

Keywords  prosthetic fitting, assessment of persons with amputation, lower limb, residual lower limb, evaluation of 
the stump
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Background
Persons with amputations require prosthetic devices that 
restore as much functionality and independence as pos-
sible while providing comfort and safety at the socket 
interface [1]. Among amputations, those of the lower 
limbs are the most prevalent [2] and have a dramatic 
physical, functional, and emotional impact [3], thereby 
compromising the quality of life of many individuals 
worldwide [4, 5].

Despite recent advancements in prosthetic technology, 
many individuals with amputations still reject or express 
dissatisfaction with their prostheses [6–10]. Although 
49–95% of persons with lower-limb amputation use a 
prosthesis [11], estimates suggest that up to 50% do not 
wear it regularly [7]. Additionally, 40–60% report dissat-
isfaction, and over 50% claim to feel pain during use—
issues often associated with poor prosthetic fitting [8]. A 
comfortable and functional prosthesis reduces the likeli-
hood of rejection or abandonment [8, 12, 13]; therefore, 
special attention should be paid to prosthesis design and 
the factors influencing fitting [6, 7].

The team in charge of prescribing, fabricating, and 
adapting prostheses are also responsible for the fitting 
process. This clinical practice is grounded in years of 
empirical evidence and relies largely on practitioners’ 
expertise, clinical judgment, and feedback from users 
during follow-up assessments [7]. In this process, pros-
thetists and clinicians employ various tools, methodolo-
gies, and tests to assess outcomes related to prosthetic 
adaptation.

Some studies have investigated prosthetic device 
adjustment, consistently concluding that there is consid-
erable variability in the tools and methods used for fit-
ting these devices. However, most studies have focused 
only on subjective clinical tools, such as questionnaires, 
functional tests, or quantitative assessments conducted 
in laboratory environments using specialized devices [6, 
8, 14]. Therefore, this systematic review aims to present 
the most common combinations of tools, devices, meth-
odologies, and tests used in residual limb assessment that 
indirectly relate to prosthetic fitting evaluation, indepen-
dent of factors like comorbidities, age, amputation cause, 
or specific methodology applications.

Methods
This systematic review follows the PRISMA guidelines 
and reports the required information accordingly (see 
Supplementary Checklist). Rayyan, an AI-powered col-
laborative platform, was used to screen and select stud-
ies. Research papers, case reports, and technical briefs 
published in English or Spanish between January 1, 2011, 
and July 7, 2023, were retrieved from five databases: Tay-
lor & Francis, SpringerLink, Sage, ScienceDirect, and 
Scopus. The following search string was employed: ( ( 

“assessment” OR “evaluation” ) AND ( “prosthetic fitting” 
OR “prosthetic adaptation” ) AND ( ( “lower Limb” OR 
“residual limb” ) AND NOT ( upper AND limb ) ) ).

Article screening and selection
Research papers, case reports, and technical briefs pub-
lished in English or Spanish between 2011 and 2023 were 
considered. Materials were retrieved from five databases: 
Taylor & Francis, SpringerLink, Sage, ScienceDirect, and 
Scopus. Only papers that reported measurements of the 
residual limb or variables related to prosthetic adapta-
tion were selected for inclusion. Conversely, the review 
excluded studies that: (1) did not assess any residual limb 
variable; (2) did not report data on prosthetic fitting; (3) 
focused on clinical aspects, such as diagnosis and treat-
ment protocols; surgical aspects, including techniques 
and outcomes; or psychological aspects, like patient well-
being and therapy effectiveness; (4) analyzed osseointe-
grated prostheses; (5) validated the translation of clinical 
questionnaires; or (6) addressed pediatric disarticulations 
or bilateral amputations.

A blind review was performed by four reviewers in 
two stages to minimize bias, as reviewers were unaware 
of each other’s decisions. In the first stage, they reviewed 
the titles and abstracts of all retrieved papers to identify 
those meeting the inclusion criteria. In the second stage, 
if the decision to include a document was not unani-
mous, the full text was analyzed.

Data extraction and critical appraisal
All papers included in this review were equally distrib-
uted among the four reviewers, who entered relevant 
information into an Excel spreadsheet. Recorded infor-
mation included key data such as title, author(s), year of 
publication, amputation level and cause, study setting, 
main variable measured, methodology and tools used, 
significant findings, future research recommendations, 
and study limitations. This information was then ana-
lyzed in group discussions to consolidate the results. 
From this analysis, three main categories were estab-
lished: (1) Variables analyzed in each study, (2) Instru-
ments employed, and (3) Conclusions regarding each 
variable and instrument.

Results
The literature search described above yielded 181 pub-
lications. Figure  1 shows a PRISMA flow diagram that 
summarizes the selection process, which ultimately led to 
the inclusion of 48 documents focused on residual limb 
measurements related to prosthetic fitting (See Supple-
mentary Material - Article Review Table). These publica-
tions addressed various factors associated with prosthetic 
fitting at the socket–residual limb interface from several 
perspectives across clinical and laboratory settings.
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Figure 2 is a Sankey diagram illustrating the most fre-
quently analyzed variables in studies on prosthetic fit-
ting. The width of each link in the diagram reflects the 
strength of the connection between nodes. The following 
are the most significant connections of these variables 
with the instruments employed to measure them: Mobil-
ity [12, 15–32] with functional tests and questionnaires; 
Kinetics [20, 22, 33–44] with motion capture systems and 
functional tests; Physical values [22, 26, 28, 38, 42, 45–52] 
with specialized equipment and sensors; Prosthesis use 
[16, 23, 24, 26, 29, 31, 42, 50, 53, 54] with questionnaires; 
Kinetics related to gait [20, 33, 35, 39, 43, 44, 52, 55, 56] 
with instrumented surfaces; Postural stability [12, 19, 31, 
43, 44, 57] with functional tests; and Prosthetic align-
ment [58, 59] with alignment-specific tools.

After analyzing these variables with the instruments 
listed above, the authors of the selected studies reported 
findings related to kinematic and kinetic aspects of walk-
ing, amputation and residual limb characteristics, tool 
and device validation, prosthetic components, functional 
abilities, prosthetic alignment, and user satisfaction.

As shown in Fig. 3, mobility-related predictors of pros-
thetic adaptation most commonly include functional 
capacity [12, 16, 17, 19, 22, 24–26, 28, 29] and function-
ality with the prosthesis [15, 18, 20, 21, 23, 27, 30–32], 
accounting for 21.6% of the variables analyzed. Velocity 
[22, 33–37, 41] is the most frequently reported kinematic 
variable, representing 29.2% of all measurements. Among 
physical variables, volume is the most commonly ana-
lyzed, accounting for 46.1% of the observations [26, 42, 
45–47, 49], followed by distance [28, 48–50], pressure 

Fig. 1  PRISMA flow diagram summarizing the literature search, screening, and selection process
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[22, 38, 52], and temperature [38], collectively represent-
ing another 46.1%.

The primary kinetic variables identified include ground 
reaction forces [20, 35, 55], which represent 38.5% of 
observations, and angular momentum [33, 39, 44], 
accounting for 30.8%. Among prosthesis use variables, 
adaptation and fit [16, 31, 54] are the most frequently 
evaluated, making up 61.5%, while comfort [26, 29, 50] 
represents 23.1%. To a lesser extent, balance [12, 31, 57] 
is reported among postural stability variables, accounting 
for 37.5%. Finally, factors related to prosthetic alignment 
are also examined in a few studies [58, 59].

The variables mentioned above have been assessed 
using specialized devices and software. Figure 4 presents 
a treemap chart showing that questionnaires and func-
tional tests are the most popular instruments (57.8%), 
followed by equipment and sensors (16.9%), motion cap-
ture systems (9.3%), instrumented surfaces (6.8%), align-
ment tools (4.2%), and specialized software (3.4%).

The Prosthesis Evaluation Questionnaire (PEQ) [22, 
24–26, 28, 29, 32, 45] is the most commonly used ques-
tionnaire (21.0%), followed by the Trinity Amputation 

and Prosthesis Experience Scales (TAPES, 15.8%) [23, 
24, 26, 31, 42, 54], the Houghton Scale (HS, 13.1%) [12, 
15, 16, 23, 32], and the Activities-Specific Balance Con-
fidence (ABC) scale (7.9%) [19, 27, 44]. Regarding func-
tional tests, the Two-Minute Walk Test (2MWT) and its 
variations [12, 18, 19, 25, 29, 32, 38, 41, 44] are the most 
widely applied (34.5%), followed by the Timed Up and Go 
(TUG) test (24.1%) [12, 16–19, 27].

Specialized devices include 3D scanners [42, 45, 47, 49], 
pressure sensors [22, 38, 52], videogrammetry- and accel-
erometry-based motion capture systems [20, 22, 28, 33, 
35, 36, 38, 40, 42–44, 52, 55, 56, 59] complemented with 
force platforms [20, 35, 43, 44, 55–57, 59], and devices for 
measuring postural stability [12, 19, 31, 43, 44, 57] and 
prosthetic alignment [58, 59]. In addition, specialized 
software has been used to edit and process videos and 
images, allowing for the quantification of specific vari-
ables of interest [36, 47, 57].

The studies cited above reported limitations in terms of 
sample characteristics, including size [22, 23, 27, 28, 33–
35, 37, 39, 42, 45, 51], heterogeneity [12, 17–19, 24, 31, 
36, 41, 54, 59], non-randomization [58, 60], and potential 

Fig. 2  Combinations of [1] prosthesis fitting variables [2], instruments, and [3] conclusions in the selected studies. Link width indicates the number of 
studies addressing each combination
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biases [29, 46]. Moreover, limitations were encountered 
in data collection methods [15, 16, 29, 33, 38, 48, 50–52] 
and experimental design issues [17, 21, 22, 26, 28–31, 
34, 38, 39, 43–45, 47, 49, 53–58]. Future studies should 
address these barriers and focus on areas such as reduc-
ing reliance on prosthetist expertise [33, 60, 61], enhanc-
ing understanding of prosthetic biomechanics [20, 33, 35, 
43, 58, 59], improving stability for prosthetic users [44, 
55, 57], and increasing the reliability of measurement 
instruments or tools [15, 21, 28, 30, 39, 40, 45, 48, 52, 53].

Discussion
Multiple tools have been employed to assess ambula-
tion, functionality, and other patient-centered outcomes 
in individuals with prosthetic devices. Mobility evalu-
ation remains the primary predictor of physical adapta-
tion, often surpassing other methodologies that assess 
residual limb characteristics [46]. Ensuring the validity 
and reliability of these tools is crucial to ensure accurate 
measurements, consistent results, and enhanced patient 
safety, which ultimately contributes to improved func-
tional outcomes and quality of life. Furthermore, reli-
able tools receive greater acceptance within the scientific 

Fig. 3  Classification of parameters found in the selected documents by type of variable
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community, facilitating their adoption in clinical practice 
[62].

Self-report questionnaires provide valuable qualitative 
insights into user experience and satisfaction, indirectly 
assessing prosthetic fitting. While they are cost-effective 
and straightforward to administer, their subjective nature 
may introduce bias and fail to capture all factors affecting 
prosthetic use. Similarly, functional tests offer a practi-
cal approach for mobility assessment in clinical settings 
without requiring advanced equipment or specialized 
training. However, these tests might not comprehen-
sively evaluate all dimensions of prosthetic performance 
and may be influenced by external factors like fatigue or 
motivation [12, 63].

Many evaluation tools have not been specifically 
designed for prosthetic users. Rather, they are adapta-
tions of tests originally intended for other mobility-
related health conditions [10]. This adaptation can limit 
the accuracy of prosthetic fitting assessments, making 
them heavily reliant on prosthetists’ expertise and user 
feedback [8, 64, 65]. Conversely, advanced tools such as 
gait analysis cameras, instrumented platforms, 3D scan-
ners, alignment systems, and accelerometers offer precise 
measurements. However, their use is typically restricted 
to laboratory settings due to high costs and the need 

for trained personnel [66]. These limitations, along with 
reduced sample sizes, underscore the importance of inte-
grating advanced tools into clinical environments to opti-
mize the fitting process. Future studies should involve 
larger participant groups to address this need [67].

Quantitative measurements, such as those obtained 
from motion capture systems or pressure sensors, often 
require expensive specialized equipment, creating finan-
cial barriers for many facilities [68]. To overcome these 
challenges, experimental designs could benefit from 
incorporating doubled-barrelled tools—such as combin-
ing questionnaires, functional tests, and objective mea-
surements—tailored to the study’s scope.

Conclusions
This review highlights that, while mobility evaluation 
remains the most common predictor of adaptation to 
prosthetic devices, functional tests and self-report ques-
tionnaires, though widely used, have limitations due to 
their subjective nature. Furthermore, many assessment 
tools are not tailored for prosthetic users, which may 
affect their accuracy.

To improve prosthetic fitting evaluations, future 
research should integrate doubled-barrelled measures 
and advanced technologies within clinical settings. As 

Fig. 4  Tools used in the selected studies. Rectangle size indicates the number of studies that employed each tool
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these tools become more accessible, clinical staff train-
ing will be essential for standardizing the fitting process 
and improving outcomes for individuals with lower-limb 
amputations. A comprehensive approach that com-
bines various assessment methods will be crucial to 
gain a deeper understanding and enhancing prosthetic 
adaptation.

Limitations
This systematic review was limited by the number of 
studies included. Many publications were excluded due to 
the lack of information on prosthetic fitting, and papers 
addressing partial foot amputations, disarticulations, or 
bilateral amputations were not considered. Consequently, 
these findings should not be generalized to individuals 
with these amputation characteristics. Likewise, as stud-
ies written in languages other than English and Spanish 
were not analyzed, potentially relevant publications may 
have been left out.
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