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Abstract
Background  This research aims to improve the control of assistive devices for individuals with hemiparesis after 
stroke by providing intuitive and proportional motor control. Stroke is the leading cause of disability in the United 
States, with 80% of stroke-related disability coming in the form of hemiparesis, presented as weakness or paresis on 
half of the body. Current assistive exoskeletonscontrolled via electromyography do not allow for fine force regulation. 
Current control strategies provide only binary, all-or-nothing control based on a linear threshold of muscle activity.

Methods  In this study, we demonstrate the ability of participants with hemiparesis to finely regulate their muscle 
activity to proportionally control the position of a virtual bionic arm. Ten stroke survivors and ten healthy, aged-
matched controls completed a target-touching task with the virtual bionic arm. We compared the signal-to-noise 
ratio (SNR) of the recorded electromyography (EMG) signals used to train the control algorithms and the task 
performance using root mean square error, percent time in target, and maximum hold time within the target window. 
Additionally, we looked at the correlation between EMG SNR, task performance, and clinical spasticity scores.

Results  All stroke survivors were able to achieve proportional EMG control despite limited or no physical movement 
(i.e., modified Ashworth scale of 3). EMG SNR was significantly lower for the paretic arm than the contralateral 
nonparetic arm and healthy control arms, but proportional EMG control was similar across conditions for hand grasp. 
In contrast, proportional EMG control for hand extension was significantly worse for paretic arms than healthy control 
arms. The participants’ age, time since their stroke, clinical spasticity rate, and history of botulinum toxin injections had 
no impact on proportional EMG control.

Conclusions  It is possible to provide proportional EMG control of assistive devices from a stroke survivor’s paretic 
arm. Importantly, information regulating fine force output is still present in muscle activity, even in extreme cases of 
spasticity where there is no visible movement. Future work should incorporate proportional EMG control into upper-
limb exoskeletons to enhance the dexterity of stroke survivors.
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Introduction
Stroke is the leading cause of disability in the United 
States, with more than 795,000 people suffering a stroke 
each year [1]. 80% of stroke-related motor deficits are in 
the form of upper-limb hemiparesis [1, 2]. Hemipare-
sis presents as a one-sided weakness or paralysis and is 
caused by damage to the central nervous system from 
the stroke. This damage to the central nervous system 
interrupts descending motor control, dissociates motor 
responses and sensory inputs, and can lead to hyperexcit-
ability of the muscles, causing spasticity [3, 4].

After a stroke, residual muscle activity in the hemipa-
retic arm can be recorded using surface electromyogra-
phy (EMG), even in patients with no detectable muscle 
activity as measured by traditional clinical assessments 
[5]. Even in the chronic phase, muscle activity persists 
and can be improved over time [6, 7]. However, the abil-
ity to modulate muscle activity is diminished in chronic 
stroke patients [8], which can lead to abnormal muscle 
activations and task difficulty [9]. Motor deficits have also 
been found in the nonparetic arm after a stroke [10].

Ultimately, hemiparesis makes it difficult to complete 
activities of daily living, reducing the quality of life and 
autonomy [11]. Assistive devices, like powered ortho-
ses [12, 13] and functional electrical stimulation (FES) 
[14], have been used to restore hand function to stroke 
patients with hemiparesis, thereby restoring indepen-
dence and increasing quality of life [13, 15, 16]. Because 
muscle activity still persists in hemiparetic stroke 
patients [5], EMG can serve as an intuitive control signal 
for FES [17, 18] and powered orthoses [13, 19]. However, 
one challenge when using paretic EMG for control is the 
presence of involuntary EMG increases when the indi-
vidual moves another part of their arm [20]; this has been 
shown to decrease the accuracy of EMG-based control 
algorithms [21].

Due to the complexities of EMG and the abnormali-
ties of paretic EMG [8, 20, 22–25], current EMG control 
algorithms most often employ a binary, “all-or-nothing” 
approach that simply detects if the muscle is active or 
inactive. When this binary control is used to control the 
position of a hand exoskeleton, individuals are limited 
to maximally closing or maximally opening their hand. 
Because there is a fixed force output from the exoskel-
eton, binary control makes it difficult, if not impossible, 
to perform fine motor actions. Variable force output is 
critical in tasks like manipulating fragile objects [26], pre-
venting slips [27], and grasping under uncertain condi-
tions [28].

Pattern recognition has been used to extract more pre-
cise control from EMG activity for research applications 
with exoskeletons [29–31] and commercial applications 
with prostheses [32–34]. However, pattern recognition 
systems still provide only discrete class predictions and 

do not inherently provide proportional position control 
or fine force regulation. Proportional control of upper-
limb exoskeletons has been shown with proportional 
force [35–37], torque [38, 39], velocity [40, 41], and posi-
tion control [41, 42]. The proportional control demon-
strated in these studies mainly focuses on the arm from 
the wrist up to the shoulder; those that do look at con-
trol of the hand use force [37], torque [39], and velocity 
control [40], and not position control. The joint from the 
wrist to the shoulder collectively supports gross motor 
function (i.e., positioning of the hand in space) and lever-
ages large, anatomically distinct muscles for control (e.g., 
the biceps and triceps). In contrast, fine motor control 
of the hand involves the coordination of multiple small 
muscles densely packed in the forearm. In the adjacent 
field of upper-limb prosthetic control, proportional posi-
tion control is common [42–47] and has been shown to 
increase performance relative to velocity control for a 
prosthetic hand [48]. Proportional position control is also 
more closely aligned with the natural encoding for hand 
control, which is in terms of joint position [49–51].

A key challenge in realizing proportional position 
control for upper-limb exoskeletons is that the primary 
patient population, stroke patients, often has severe mus-
cle spasticity [52, 53]. Muscle spasticity often manifests 
as lower EMG SNR [54], excessive co-contractions [55, 
56], and delayed muscle activation/relaxation [22–25, 
56]. Due to these signal challenges, proportional position 
control of exoskeletons has often been performed using 
EMG from the nonparetic, contralateral limb [31, 57, 58] 
rather than the affected paretic limb, which limits the 
ability to perform bilateral tasks. Others have only tested 
exoskeleton control with healthy participants rather than 
the target patient population of stroke survivors [30, 59].

Using high-density EMG in conjunction with machine 
learning can be a solution to obtain more robust and dex-
terous control from paretic EMG. High-density EMG 
gathers data from most, if not all, the muscles, and avoids 
the need to meticulously identify isolated EMG from 
desired muscles. Machine learning is then used to iden-
tify and exploit even the smallest differences among the 
ensemble of muscle activity when attempting different 
movements. Indeed, high-density EMG has already been 
used to classify hand gestures with high accuracy with 
paretic EMG from stroke survivors [29, 60]. Building on 
these works, here we propose high-density EMG in con-
junction with machine learning to provide proportional 
control of the hand. To do this, we leverage a modified 
Kalman filter, which has been demonstrated to provide 
robust proportional position control with healthy indi-
viduals and with upper-limb amputees [46].

In this study, we specifically investigated the ability to 
extract proportional position control from the extrinsic 
hand muscles of stroke survivors with hemiparesis. We 
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show that all participants were able to achieve propor-
tional EMG control, regardless of their age, time since 
their stroke, clinical spasticity rate, and history of botuli-
num toxin injections. We also show that EMG signal-to-
noise ratio and proportional control are better for hand 
grasp than hand extension, consistent with the neuro-
physiology of post-stroke spasticity [61]. These results 
can help guide the implementation and patient inclusion 
criteria for future assistive hand exoskeletons with pro-
portional EMG control.

Methods
Participant information
Ten stroke survivors with hemiparesis were recruited for 
this study (Table  1). Additionally, ten healthy individu-
als with no neuromuscular impairments were recruited 
to serve as approximately age-matched controls (i.e., 
the ages were not matched exactly but the average age 
of both groups was similar) (Table 3). Informed consent 
and experimental protocols were carried out in accor-
dance with the University of Utah Institutional Review 
Board and the Declaration of Helsinki guidelines. Table 1 

lists the demographics of the stroke survivors, including 
age, sex, Modified Ashworth Scale score, type and loca-
tion of stroke, and years post-stroke. Table 2 has botuli-
num injection information for the four participants who 
received injections. The age, sex, and handedness of the 
control group are found in Table 3.

EMG sleeve and signal acquisition
Surface EMG from the participants was collected using 
custom EMG sleeves [62]. The EMG sleeve had 34 
electrodes that make physical contact with the skin to 
record an electrical voltage. One electrode served as 
a permanent ground, and another served as a perma-
nent reference. The remaining 32 electrodes produced 
a single-ended channel of EMG each using the perma-
nent ground and reference. EMG was sampled at 1 kHz 
and filtered using the Summit Neural Interface Proces-
sor (Ripple Neuro, LLC, Salt Lake City, UT, USA). The 
recorded EMG was band-pass filtered with cutoff fre-
quencies of 15  Hz (sixth-order high-pass Butterworth 
filter) and 375  Hz (second-order, low-pass Butterworth 
filter). Notch filters were applied at 60, 120, and 180 Hz 
to remove 60 Hz power-line interference and its second 
and third harmonics. Differential EMG signals were then 
calculated for all possible pairs of the 32 single-ended 
EMG channels, resulting in 496 (32 choose 2) differential 

Table 1  Stroke participant demographics
Participant Age Sex MAS Stroke 

type and 
location

Years 
since 
stroke

1 44 M 3 Unknown 
right

4.13

2 52 F 2 Ischemic 
Left MCA

1.41

3 24 F 1 Hemor-
rhagic 
right fron-
tal lobe

5.40

4 56 F 3 Periopera-
tive stroke

12.20

5 45 M 2.5 Ischemic 
Right MCA

1.21

6 32 M 1 Pediatric 
Hemor-
rhagic

30.66

7 57 M 1 Ischemic 
right MCA

0.15

8 47 F 3 Ischemic 
Right ICA

7.09

9 22 F 2 In utero 
Hemor-
rhagic

22.51

10 27 F 3 Abscess 
caused 
stroke left

3.20

Average 40.6 ± 13.28 60% 
F

2.15 ± 0.88 40% Isch-
emic, 40% 
hemor-
rhagic, 
20% 
unknown

8.80 ± 10.18

Table 2  Botulinum toxin injection information for participants 
who received injections
Participant Injection 

frequency
Days since 
injection at 
time of study

Muscles injected

5 3 months 52 Left FCR, Left FCU, 
Left FDS, Left, FDP

6 6 months 37 Left FDS
8 3 months 56 Left FDS, Left FDP, 

Left DI
10 3 months 100 Right Deltoid, Right 

FDS, Right FDP
Muscle abbreviations: FCR- Flexor carpi radialis, FCU- Flexor carpi ulnaris, FDS- 
Flexor digitorum superficialis, FDP – Flexor digitorum profundus, DI - Dorsal 
interossei

Table 3  Healthy control demographics
Control participant Age Sex Handedness
1 74 F L
2 32 M R
3 27 M L
4 45 F R
5 64 M R
6 35 F R
7 54 F R
8 23 F R
9 26 F L
10 28 F L
Average 40.8 ± 17.74 60% F 60% R
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recordings [46]. The mean absolute value (MAV) over a 
sliding 300-ms window was calculated at 30 Hz for all the 
single-ended channels and differential pairs. The result-
ing EMG feature set consisted of the 300-ms smoothed 
MAV on 528 EMG channels (32 channels from the 32 
electrodes, and 496 channels from the differential pairs), 
calculated at 30 Hz, as has been done in prior work with 
upper-limb amputees [63].

Training datasets
The participants were instructed to mimic the pro-
grammed movements of a virtual bionic hand to corre-
late EMG activity to intended hand movements (Fig. 1). 
As the participants attempted to mimic the virtual hand 
with their paretic hand, we recorded, in synchrony, the 
kinematics (joint positions) of the virtual hand and EMG 
activity. The participants with hemiparesis completed 
two training sessions with each arm (four total), and the 
healthy controls completed two training sessions with 
their right arm only. Each training session consisted of 
grasping or extending all the digits of the hand ten times. 
Each movement was 4.4 s in duration, consisting of 0.7 s 
of grasp/extension away from the resting hand position, 
a 3-s hold-time at the maximum distance away from the 
resting hand position, and a 0.7-second relaxation return-
ing to the resting hand position as described in [46]. The 
participants were given 2  s of rest between movements 

for the nonparetic arm and healthy arm, and 3  s of rest 
between movements for the paretic arm.

Control algorithm
We used a Kalman Filter (KF) defined in prior work with 
upper-limb amputees [45, 46, 63–68] to estimate and 
predict motor intent from the continuous EMG signals. 
Ad-hoc modifications to this KF have been described in 
prior work [46], leading to the modified KF (MKF) used 
in this study. Briefly, the output is modified by a threshold 
such that the modified output will remain at zero until 
the absolute value of the nonmodified output is greater 
than the threshold. As in prior publications [63, 64], we 
used a default threshold value of 0.2. The MKF has been 
used previously for myoelectric control for upper limb 
prostheses [46, 63, 64, 69–71], and the detailed math-
ematical justification, construction, and parameters of 
the KF have been outlined in [65]. The baseline EMG 
MAV was subtracted from the EMG features before 
training and testing the KF. We assumed that the EMG 
features were normally distributed and relied on the 
KF covariance matrix to inherently address differences 
among them. The EMG feature set of 528 channels was 
reduced to 48 channels using a stepwise Gram-Schmidt 
channel-selection algorithm [72, 73]. At a high level, the 
Gram-Schmidt algorithm is an orthonormalization chan-
nel selection process that first maximizes correlation and 
then adds additional channels that contribute the most 

Fig. 1  Experimental overview. (A) Participants who had hemiparesis due to a stroke completed the task with both their paretic and nonparetic arms. 
High-density EMG was recorded from the extrinsic hand muscles in the forearm using a custom EMG sleeve [62]. (B) The participants attempted to mimic 
preprogrammed kinematics of a bionic hand displayed on a computer screen during the training phase. EMG was recorded in synchrony, and a modified 
Kalman filter was trained to regress proportional position control from the ensemble of EMG activity [46]. (C) During the testing phase, the participants 
were given control of the bionic hand to complete a virtual target-touching task in real-time. The participants received visual cues for when each trial 
began and ended with circles indicating the targets would move from rest to the target location. Additionally, the color of the circles provided feedback 
to the participants if they were within the target window; red meant they were outside the target, and green meant they were inside the target window
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unique information. Briefly, during each iteration, esti-
mates of each movement residual are made by projecting 
each feature residual onto the movement residual, and 
features are selected by finding the feature residuals that 
improve the RMSE between the movement residual and 
its estimate the most. The selected feature is added to a 
list and the process is iterated until a prescribed number 
of features is selected, in this case 48 (largest number of 
channels supported by the system for real-time infer-
ence). A single MKF was used to predict the position of 
the virtual hand. We limited outputs of the MKF between 
− 1 and 1, where − 1 corresponded to maximum exten-
sion, + 1 corresponded to maximum grasp, and 0 cor-
responded to when the hand was at rest [45]. We used 
100% of the training data to train each MKF.

Signal-to-noise ratio analysis
EMG signal-to-noise ratio (SNR) was calculated as the 
MAV of the EMG signal during movement divided by the 
MAV of the EMG signal during rest. EMG SNR was cal-
culated for the 32 single-ended channels (e.g., one SNR 
value per electrode from each sleeve). EMG SNR was 
calculated separately for grasping (closing the hand) and 
extension (opening the hand). The median SNR from the 
32 single-ended channels was used from each participant 
in the analysis. Additionally, further analysis was com-
pleted to explore the SNR for subsets of electrodes that 
would most likely be placed over a flexor or extensor 
muscle. To do this, the five highest correlated electrodes 
were selected using Pearson’s correlation coefficient for 
each movement, and the median SNR was reported for 
each participant. Similarly, the five channels with the 
highest SNR were also selected, and the median SNR was 
reported for each participant.

SNR was also calculated for the MKF and simple linear 
regression using one channel of EMG input. The linear 
regressor followed the format of y = m ∗ x + b where y 
was the kinematic position and x was the value of the sin-
gle EMG channel. The slope (m) was calculated by divid-
ing the covariance of x and y by the variance of x. The 
intercept was calculated by subtracting the slope times 
the average of x from the average of y. For both algo-
rithms, 50% of the data was used to train and 50% was 
used for testing. The same training and testing trials were 
used for both algorithms. The EMG channel selected 
for the linear regressor was the channel with the high-
est Pearson’s correlation coefficient with the kinematic 
position.

Real-time target touching task
We used a virtual target-touching task (TTT) to quan-
tify user and algorithm performance. This task involves 
controlling a virtual bionic arm (MSMS; John Hopkins 
Applied Physics Lab, Baltimore, MD, USA), where the 

participant is provided real-time visual feedback. In this 
task, the participant actively controlled the virtual hand 
and attempted to move it to a target location and keep 
it there. Target locations were at 50% of the maximum 
grasp/extension possible to evaluate proportional control 
for the selected DOF. The participant was instructed to 
hold the hand in the target position for the trial duration. 
Visual feedback was provided to the participant to con-
firm that the hand was within ± 15% of the target location. 
Each test trial lasted 5 s, with a 2-s wait time between tri-
als (10-s wait time for the paretic limb). A total of 20 tri-
als were collected for both grasp and extension in groups 
of 10 trials to avoid participant fatigue. The participants 
completed the TTT for grasp and extension separately, 
and each participant was assigned pseudo randomly to 
begin with either grasp or extension.

We compared the performance of the paretic, nonpa-
retic, and healthy controls using three metrics: (1) root 
mean square error (RMSE), (2) percent time in the tar-
get 15%-error window, and (3) the mean longest continu-
ous-hold duration (i.e., hold duration) within the desired 
15%-error window around the target location [64]. RMSE 
captures the ability to finely control the virtual hand. 
The percent time in target determines the overall per-
formance on the task, and the mean longest continuous 
hold duration extrapolates performance to a more func-
tional metric (such as the ability to hold an object with-
out dropping it).

To calculate RMSE devoid of the participants’ reaction 
time, we delayed the recorded kinematics by a lag deter-
mined by cross-correlating the kinematic predictions and 
the target location signals. This alignment was applied 
across all experimental conditions for a given session 
so that no bias would affect one experimental condition 
more than another [46]. Additionally, the RMSE was cal-
culated from the 15%-error window, such that the RMSE 
was zero if the hand was anywhere within the 15%-error 
window (consistent with the visual feedback the partici-
pants received) [74].

Statistical analysis
All statistical analyses were completed using the Statis-
tics and Machine Learning Toolbox in MATLAB 2021b 
(MathWorks, Natick, MA, USA).

The collapsed SNR data (i.e., N = 10) were determined 
to be nonparametric through the Anderson-Darling test 
(p < 0.05); therefore, nonparametric statistical tests were 
used. A one-way nonparametric analysis of variance 
(ANOVA; Kruskal-Wallis) was used to compare the EMG 
SNR for both grasping and extension of the hand for the 
three groups (paretic, nonparetic, healthy). If any signifi-
cance was found, subsequent pairwise comparisons (Wil-
coxon rank-sum tests) were made using Tukey’s honestly 
significant difference criterion correction for multiple 
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comparisons. Additionally, the paretic SNR was split post 
hoc based on whether the participant received botulinum 
toxin injections (N = 4 with and N = 6 without). These data 
were also determined to be nonparametric, and nonpara-
metric statistical tests were used. A Wilcoxon rank-sum 
test was used to compare the EMG SNR between partici-
pants receiving botulinum toxin injections and the SNR 
of participants who were not.

The collapsed TTT results for each outcome metric 
(i.e., N = 10) were determined to be parametric through 
the Anderson-Darling test (p > 0.05), so parametric sta-
tistical analyses were performed. A two-way analysis of 
variance (ANOVA) was used to compare task perfor-
mance for the three groups (healthy controls, nonparetic, 
and paretic) and two movements (grasp and extension). 
The two factors were EMG source (healthy, nonparetic, 
and paretic) and movement type. If any significance was 
found, subsequent pairwise comparisons (two-sample 
t-test). Additionally, the variance was compared using 
population F-tests. As with the SNR data, the paretic 
TTT data was split post hoc by whether the participant 
received botulinum toxin injections (N = 4 with and N = 6 
without). These data were also determined to be para-
metric, and parametric statistical tests were used. A two-
sample t-test was used to compare the task performance 
between participants who had and had not received bot-
ulinum toxin injections.

The Pearson correlation coefficient was calculated 
between paretic and nonparetic performance metrics 
and demographic metrics of Modified Ashworth Scale 
score, age, time post-stroke, and sex.

Results
Paretic EMG SNR is significantly worse for hand extension, 
but not hand grasp
We first compared the SNR of the EMG from healthy 
participants and the paretic and nonparetic arms of 

stroke participants performing hand grasps and exten-
sions. Detectable EMG was present for all participants 
(Fig. 2). This was true even for the four participants with 
considerably increased tone, no visible active movement, 
and minimal passive movement (i.e., MAS score of 3).

We found that in grasp movements, the SNR was not 
significantly different between the groups (control vs. 
nonparetic p = 0.9926, control vs. paretic p = 0.9994, 
nonparetic vs. paretic p = 0.941; pairwise rank-sum tests 
with correction for multiple comparisons; Fig. 3A). How-
ever, in extension movements, the paretic SNR was sig-
nificantly lower than both nonparetic and control SNR 
(p’s < 0.05, pairwise rank-sum tests with correction for 
multiple comparisons).

Importantly, these differences in SNR were observed 
with an ensemble of 32 EMG channels where some chan-
nels are not placed directly over a flexor or extensor. 
To explore the impact of electrode placement on SNR, 
we next looked at the SNR from only the top five EMG 
channels correlated to either flexion or extension, as 
these channels would most likely be placed over a flexor 
or extensor, respectively. Using this approach, we found 
a similar trend (Fig.  3B), although no significant differ-
ences were present among any of the groups (p’s > 0.05, 
pairwise rank-sum tests with correction for multiple 
comparisons).

Another approach to explore the impact of electrode 
placement on SNR is to simply look at the subset of 
channels with the best SNR for flexion or extension, as 
these would also likely be placed over a flexor or extensor 
respectively. To this end, we also looked at the SNR from 
the top five EMG channels with the best SNR for flexion 
and extension. A similar trend was found (Fig. 3C), and 
paretic extension SNR was lower than control extension 
(p = 0.0475) but not lower than nonparetic extension 
(p = 0.0676, pairwise rank-sum tests with correction for 
multiple comparisons).

Fig. 2  Normalized EMG activity from the extrinsic hand muscles during instructed hand grasp (a) and hand extension (b). Data show the EMG feature 
(300-ms smoothed mean absolute value) from one healthy control (green) and one stroke participant’s nonparetic (blue) and paretic (red) arms. Data 
show the mean and standard deviation from the 32 surface electrodes
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We also separated the paretic SNR by whether the 
participants received botulinum toxin injections in their 
affected arms. Although our sample size was limited, we 
found no significant difference between the calculated 
SNR between the two groups for grasping movements 
(Supplemental Fig. S1; p = 0.48 Wilcoxon rank sum test) 
or extension movements (Supplemental Fig. S1; p = 0.76 
Wilcoxon rank sum test).

High-density EMG and modified Kalman filter improves 
SNR
As a first-order approach to extracting control from 
paretic EMG, we quantified the SNR of the output pro-
duced by the MKF. The MKF resulted in significantly 
greater SNR for grasping and extension in both the con-
trol and non-paretic groups (p’s < 0.05, pairwise rank-sum 
tests with correction for multiple comparisons). A similar 

trend was present for the paretic group, although this 
was not significant (Supplemental Fig. S2).

Using aggregate data from all patient groups and 
both flexion and extension motions, the MKF resulted 
in significantly higher SNR than the EMG signal alone 
(p < 0.001, pairwise rank-sum tests with correction for 
multiple comparisons; Fig. 4). The SNR of the MKF was 
also significantly higher than the SNR of a simple lin-
ear regressor using the most correlated EMG channel 
(p < 0.001, pairwise rank-sum tests with correction for 
multiple comparisons; Fig. 4). Thus, simple linear regres-
sion from one EMG channel placed directly over the flex-
ors or extensors, as is typical for commercial myoelectric 
prostheses, may not be sufficient for proportional control 
alone.

Fig. 3  EMG SNR during hand grasp and hand extension using all 32 EMG channels (a), the top five most correlated EMG channels (b), and top five EMG 
channels with the highest SNR (c). (a) Across all 32 EMG channels, the SNR of the paretic EMG was significantly lower than the SNR of the nonparetic EMG 
and healthy EMG for hand extension. In contrast, no differences were observed among groups for hand grasp. Similarly, no within-group differences were 
found between hand grasp and hand extension. (b) When using only the top five most correlated EMG channels as a proxy for recording directly from 
the respective flexors or extensors, a similar trend is seen, although the difference in paretic extension is no longer significant. (c) When using only the 
top five EMG channels with the highest SNR as another proxy for recording directly from the respective flexors or extensors, the trend is still present, and 
extension is significantly worse for the paretic hand than the healthy control group. Box plots show the median, interquartile range, and most extreme 
non-outlier values. Circles denote outliers. Asterisk (*) denotes p < 0.05, pairwise rank-sum tests with correction for multiple comparisons. N = 10 control 
participants and 10 stroke participants (nonparetic and paretic)
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Stroke survivors retain the ability to finely regulate muscle 
activity even in extreme cases of spasticity where the hand 
is completely immobile
Next, we tasked stroke survivors with spastic hemipa-
resis to complete a proportional target-touching task 
using EMG-based control. All 10 stroke survivors suc-
cessfully completed the task, demonstrating their abil-
ity to finely regulate their muscle activity to stay within 
the error window (Fig.  5). This was true for both hand 
grasp and for hand extension, despite there being signifi-
cantly worse EMG SNR for extension on the paretic side 

(Fig. 3). Furthermore, the four participants with consid-
erably increased tone, no visible active movement, and 
minimal passive movement (i.e., MAS score of 3) were 
also able to successfully achieve proportional EMG con-
trol. Indeed, Fig. 5 shows representative performance on 
the task from a stroke survivor at the mean performance 
level, who coincidentally had an MAS score of 3.

Proportional EMG control from paretic arms is similar to 
nonparetic and healthy arms for grasping
Having shown that stroke survivors could reliably achieve 
proportional EMG control with their paretic arm, we 
next quantified task performance relative to their nonpa-
retic arm and healthy controls. We found no significant 
difference in task performance between paretic, non-
paretic, and healthy arms when performing hand grasp 
(Fig.  6). This was true for all three performance met-
rics; there was no significant difference among RMSE 
(p = 0.4157, ANOVA), the percent time within the tar-
get (p = 0.1713, ANOVA), or the maximum hold time 
(p = 0.6009, ANOVA).

In contrast, for proportional hand extension, we 
observed significantly worse performance with the 
paretic arm compared to healthy controls. This was true 
for both RMSE (p < 0.05) and the percent time within the 
target (p < 0.01, pairwise unpaired t-tests with correction 
for multiple comparisons). No significant difference was 
observed between the paretic and nonparetic arm, or 
between any of the groups for the maximum hold time.

We also quantified each participant’s variance among 
their attempts at the task (Supplemental Fig. S3). A 
smaller variance would indicate more precise and consis-
tent control. We found no significant differences among 
the patient populations; paretic, non-paretic, and healthy 
hands had similar precision at the task. However, we 
did see a significant difference between grasping and 

Fig. 5  Performance of the virtual target-touching task for one of the stroke participant’s paretic arm (a; red) and nonparetic arm (b; blue). Data from a 
representative control is shown separately (c; green) and overlaid with the stroke participant’s data (d) for comparison. The task was achievable under all 
conditions, as indicated by the bold lines staying within the target window. Data show the kinematic position of a virtual bionic hand while attempting to 
perform a partial hand grasp (50% output), followed by a brief period of rest, and then a partial hand extension (50% output). The dotted lines represent 
the target window the participants attempted to remain within. Data show the mean and standard deviation of the kinematic position across the 20 
trials of the task. The healthy participant and stroke participant shown were at the mean performance level of their respective groups. Notably, the stroke 
participant at the mean performance level, for which the data is shown, had an MAS score of 3, indicating minimal hand motion

 

Fig. 4  SNR of EMG, linear regression, and MKF output. The MKF had sig-
nificantly higher SNR than EMG alone and the linear regressor. Data are 
aggregated across all patient groups (control, nonparetic, and paretic) as 
well as both motions (flexion and extension). Data are shown on a loga-
rithmic y-axis. Box plots show the median, interquartile range, and most 
extreme non-outlier values. Circles denote outliers. Triple asterisk (***) de-
notes p < 0.001, pairwise rank-sum tests with correction for multiple com-
parisons. N = 10 control participants and 10 stroke participants (nonparetic 
and paretic)

 



Page 9 of 14Thomson et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:222 

extension for RMSE and percent time in target at the 
aggregate level (p < 0.05 and p < 0.01 respectively, pairwise 
comparisons with correction for multiple comparisons). 
That is, all participants had less precision with grasp-
ing than with extension. For the paretic hand of stroke 
patients, this implies extension has worse accuracy but 
grasping has worse precision.

Importantly, despite the heterogeneity of stroke, we 
found no significant difference among the variance of 
the patient groups. In other words, the relative perfor-
mance among stroke patients with their paretic limb was 
no different than the relative performance among stroke 
patients with their nonparetic limb or among healthy 
controls (p’s > 0.15 for all metrics, F-tests with correction 
for multiple comparisons).

Post-hoc analyses regarding the use of botulinum toxin 
injections also suggest no significant impact on pro-
portional EMG control. No significant differences were 
observed in any of the metrics for both grasping and 
extension (p’s > 0.3, unpaired t-tests; Supplemental Fig. 
S4).

Proportional EMG control is not correlated with spasticity, 
age, or time since stroke
We also calculated the Pearson correlation coefficients 
between paretic EMG SNR, task performance met-
rics, and participant demographics (Fig.  7). We found 
no meaningful correlation among participant demo-
graphics, suggesting that, at least for these participants, 
proportional EMG control was not dependent on spas-
ticity, age, or time since the stroke. Some moderate cor-
relations (absolute values of 0.4 to 0.6) were observed 
among EMG SNR and task performance metrics. Some 
strong correlations (absolute values of 0.6 to 0.8) were 
observed between grasping and extension metrics. A few 
extremely strong correlations (absolute values of 0.8 to 1) 
were observed among performance metrics for a given 
condition (e.g., grasping RMSE vs. grasping PTT).

Given that some effects, such as age and sex would 
likely impact both the paretic and nonparetic arm equally, 
we furthered this analysis by calculating the Pearson cor-
relation coefficients between nonparetic EMG SNR, task 
performance metrics, and participant demographics 

Fig. 6  Proportional EMG control of hand grasp and extension for paretic, nonparetic, and healthy arm. Participants completed a target-touching task with 
a virtual bionic arm controlled by surface EMG from the extrinsic hand muscles. Performance on the task was measured using the RMSE between the 
participant’s kinematic position and the target position (a), the percent time within the target window (b), and the maximum continuous duration within 
the target window (c). Lower RMSE indicates better performance. A higher percent time within the target window and a longer maximum hold time indi-
cate better performance. Across all three metrics, no significant differences were observed for grasping among the paretic, nonparetic, and healthy arms. 
In contrast, the paretic arm had significantly worse RMSE and percent time within the target window for hand extension. Asterisk (*) denotes p < 0.05, 
double asterisk (**) denotes p < 0.01, pairwise comparisons with correction for multiple comparisons. N = 10 healthy controls and 10 stroke participants 
(nonparetic and paretic). Data show mean ± standard error of the mean
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(Supplemental Fig. S5). We found similar trends between 
the paretic and non-paretic side. However, on the paretic 
side SNR was correlated to task performance, and this 
was not true for the non-paretic side.

Discussion
Prior work has shown it is possible to classify multiple 
discrete hand gestures from paretic EMG after a stroke 
[29, 60]. In contrast, here we show that it is also possible 
to proportionally regress kinematic position from paretic 
EMG after a stroke. Importantly, all participants, regard-
less of the severity of their post-stroke spasticity, were 
able to achieve proportional position control. This was 
true even for patients with MAS scores of 3 who were 
unable to physically move their hand. Together, these 
findings suggest that it is feasible to provide more dexter-
ous EMG control of assistive devices for stroke patients, 
as proportional control could also be extended to veloc-
ity, force, or torque control. These findings are particu-
larly impactful and timely given the increasing prevalence 
of stroke [75], the growing popularity of powered orthot-
ics [76, 77], and the new reimbursement pathway for 
powered upper-limb orthotics [78].

Prior work has shown that impaired movement is cor-
related with higher spasticity and MAS scores [79]. In 
contrast, here, we show that proportional EMG control is 
not correlated with MAS scores. In other words, patients 
can still selectively modulate EMG activity even in severe 

cases of spasticity where there is no overt hand move-
ment. These patients with severe spasticity are typically 
ineligible for assistive powered hand orthoses due to the 
excessive torque necessary to overcome their spasticity 
[80]. However, the use of assistive EMG-controlled exo-
skeletons has been shown to improve arm function [40, 
81, 82]. Thus, an unfortunate reality is that the patients 
who could benefit the most from an exoskeleton are par-
adoxically unqualified to receive them. The fact that pro-
portional EMG control is possible with extreme spasticity 
supports the use of EMG-based virtual reality [83] and/
or biofeedback [84, 85] therapy to improve arm function, 
thereby helping patients qualify for assistive powered 
hand exoskeletons.

The use of novel EMG therapies for spasticity is further 
supported by the fact that EMG control was not hindered 
by routine clinical management of spasticity via botuli-
num toxin injections. This finding is consistent with prior 
showing that botulinum toxin injections improve volun-
tary motor control [86], have no impact on the motor 
performance of the spastic muscles [87], and can improve 
EMG pattern-recognition control [88]. Botulinum toxin 
has also been shown to reduce muscle activity overall 
[86, 87, 89, 90], but muscle activity recovers within a few 
weeks [89]. This finding, however, is limited by our small 
sample size; lack of a statistical difference does not imply 
equivalence. Future work should investigate the impact 
of botulinum toxin on EMG control in a larger cohort 

Fig. 7  Paretic EMG SNR and task performance were not correlated with spasticity, age, or time since stroke. The heatmap shows pairwise Pearson cor-
relation coefficients
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of patients within the first few hours and days after 
injection.

Although we show that proportional EMG control 
is possible for both hand grasp and hand extension, we 
also show that proportional EMG control for the paretic 
hand was more accurate, but less precise for grasping 
relative to extension. These results are consistent with 
the underlying neurophysiology of post-stroke spasticity. 
After a stroke, there is an increase in inappropriate mus-
cle coactivation [61], and hand extension is often more 
impacted than hand grasp [61, 91]. Future implementa-
tions of proportional EMG control for assistive devices 
should leverage this knowledge to design EMG control 
algorithms around hand grasp instead of hand extension, 
akin to a voluntary-close prosthesis [92] or orthosis [40, 
93, 94].

In this study, we used high-density EMG and a modi-
fied Kalman filter to extract proportional position control 
from paretic EMG. An important question is whether or 
not proportional position control could be achieved using 
fewer EMG channels. Preliminary analyses suggest that, 
at least for hand grasping and extension, fewer channels 
may actually be preferential for the paretic arm (Supple-
mental Fig. S6). Indeed, we observed that the RMSE of 
the MKF initially decreased and then plateaued as more 
channels were added for the healthy and non-paretic 
arms. In contrast, performance degraded as the num-
ber of channels increased for the paretic arm. Although 
it is uncertain how these offline measures of RMSE will 
translate to real-world human-in-the-loop control, future 
work should explore the optimal number and placement 
of EMG channels.

This study focused exclusively on hand grasping and 
hand extension as these motions are fundamental to 
activities of daily living, enable grip force regulation, and 
are readily supported by existing assistive hand ortho-
ses. Future work should explore the ability to provide 
proportional position control over multiple motions 
simultaneously. The MKF used in this study has been 
used to provide simultaneous and proportional control 
of six degrees of freedom of the hand in real-time for 
healthy and amputee populations [46]. RMSE of the MKF 
increases as the number of degrees of freedom increases 
[95]. In our preliminary analyses, we found the rate of 
decline may be accelerated for the paretic arm (Supple-
mental Fig. S7). Future work should consider more 
advanced non-linear control algorithms, as these have 
already shown the capacity to classify multiple hand ges-
tures with high accuracy from the paretic EMG of stroke 
survivors [29, 60].

Conclusion
Here, we show that stroke survivors can achieve propor-
tional EMG control, regardless of their age, time since 
their stroke, clinical spasticity rate, and history of botu-
linum toxin injections. We also show that EMG signal-
to-noise ratio and proportional control are better for 
grasping motions than extension motions. This work 
constitutes an important step towards the advancement 
of more intuitive and dexterous hand exoskeletons with 
proportional position control. More dexterous upper-
limb assistive powered orthoses may ultimately improve 
the quality of life of stroke survivors.
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