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Abstract 

Background  Simultaneous and proportional control (SPC) based on surface electromyographic (sEMG) signals 
has emerged as a research hotspot in the field of human–machine interaction (HMI). However, the existing continu-
ous motion estimation methods mostly have an average Pearson coefficient (CC) of less than 0.85, while high-pre-
cision methods suffer from the problem of long inference time (> 200 ms) and can only estimate SPC of less than 15 
hand movements, which limits their applications in HMI. To overcome these problems, we propose a smooth Multi-
scale Attention Patching Encoder Network (sMAPEN).

Methods  The sMAPEN consists of three modules, the Multi-scale Attention Fusion (MAF) module, the Patching 
Encoder (PE) module, and a smoothing layer. The MAF module adaptively captures the local spatiotemporal features 
at multiple scales, the PE module acquires the global spatiotemporal features of sEMG, and the smoothing layer 
further improves prediction stability.

Results  To evaluate the performance of the model, we conducted continuous estimation of 40 subjects performing 
over 40 different hand movements on the Ninapro DB2. The results show that the average Pearson correlation coef-
ficient (CC), normalized root mean square error (NRMSE), coefficient of determination (R2), and smoothness (SMOOTH) 
of the sMAPEN model are 0.9082, 0.0646°, 0.8163, and − 0.0017, respectively, which significantly outperforms 
that of the state-of-the-art methods in all metrics (p < 0.01). Furthermore, we tested the deployment performance 
of sMAPEN on the portable device, with a delay of only 97.93 ms.

Conclusions  Our model can predict up to 40 hand movements while achieving the highest predicting accuracy 
compared with other methods. Besides, the lightweight design strategy brings an improvement in inference speed, 
which enables the model to be deployed on wearable devices. All these promotions imply that sMAPEN holds great 
potential in HMI.
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Introduction
Myoelectric control provides intuitive control in human–
machine interfaces (HMI) and has broad applications in 
various fields such as medical prosthetics and industrial 
control. Surface electromyographic (sEMG) signal is gen-
erated by muscle contractions beneath the skin and is 
directly related to human movement. It can be collected 
from shallow muscles through electrodes [1, 2]. Due to 
its abundant kinematic information and mature non-
invasive acquisition techniques, sEMG has been widely 
applied in recognizing human movement intention, espe-
cially in hand movement recognition [3, 4].

However, sEMG signals are usually very weak, around 
µV (microvolts), making them susceptible to external 
environmental noise (such as electromagnetic interfer-
ence) and internal physiological noise (such as electro-
cardiography and respiration) [3]. Due to physiological 
differences, exercise differences, psychological factors, 
etc., changes in sEMG signals occur among different sub-
jects. Therefore, sEMG signals are usually preprocessed 
to overcome the noise. Besides, adaptive learning algo-
rithms and deep learning models are used to overcome 
the influence of inter-subject variability and improve the 
quality and reliability of sEMG signals [2].

Traditional sEMG-based hand control methods use 
pattern recognition techniques. These techniques involve 
manual feature selection and machine learning algo-
rithms. Although methods like Random Forests (RF) [5] 
and Support Vector Machines (SVM) [6] are success-
ful, their performance may decrease as the demanded 
motion categories increase. To overcome these draw-
backs, deep learning techniques are adopted [7–9]. How-
ever, methods based on discrete motion classification 
cannot capture continuous changes in human motion, 
which limits their applications. To address this challenge, 
researchers are focusing on continuous estimation of 
human movements, which is also known as simultaneous 
and proportional control (SPC). Surface EMG signals can 
estimate human movements more smoothly and natu-
rally by establishing the continuous relationship between 
the sEMG signal and joint angle, angular velocity, joint 
torque, etc. [2].

Currently, continuous motion estimation meth-
ods based on sEMG signals can be mainly divided into 
model-based and model-free approaches [10]. Model-
based methods involve constructing complex dynamic 
or musculoskeletal models to describe the relationship 
between sEMG and kinematic information. These meth-
ods have strong explanatory ability and accuracy, but face 
challenges such as complex model construction, difficult 
parameter measurements, and limited number of degree-
of-freedoms that can be estimated [11, 12]. Model-free 
methods utilize artificial intelligence techniques to 

establish the relationship between sEMG and target val-
ues. Compared with model-based approaches, model-
free methods have higher flexibility, making them more 
easily adopted in applications [13]. Deep learning meth-
ods have emerged as a powerful tool in the continuous 
estimation of myoelectric control in recent years. Most 
deep learning methods employing recursive structures, 
such as long short-term memory (LSTM) networks, cap-
ture temporal information from sEMG signals to fulfill 
the estimation [1, 14–17]. To capture the spatial and tem-
poral features concurrently from sEMG signals, research-
ers combined LSTM with CNN [18–20]. Although the 
above models are state-of-the-art (SOTA) methods for 
sequence modeling, their Markov property constrains 
them to parallel train, which extends training time. The 
emergence of the temporal convolutional network (TCN) 
has alleviated the problem, but the prediction accuracy 
still needs to be improved [21]. Recently, Lin et  al. [22] 
proposed a smoothed BERT model (sBERT) that utilizes 
a multi-head attention mechanism to achieve parallel 
training, which enhances prediction accuracy and train-
ing speed. However, having too many parameters in the 
model limits its deployment on portable devices.

Designing a model that has high accuracy, low latency, 
and strong deployment performance on wearable devices 
is the consistent target of sEMG-based motor intention 
estimation. In this paper, we proposed a smooth Multi-
scale Attention Patching Encoder Network (sMAPEN) 
which allows parallel processing in the training stage. 
It comprises three modules: the Multi-scale Attention 
Fusion (MAF) module, the Patching Encoder (PE), and a 
smoothing layer. Inspired by [23, 24], we choose the com-
bined feature as input, which is concatenated from three 
single features. The MAF can capture the local informa-
tion from sEMG signals, while PEN acquires the global 
features. The smoothing layer is utilized to lessen fluctua-
tions in the output. To validate this approach, we assessed 
our method with SOTA methods on the Ninapro data-
set [5], which includes 40 subjects and 40 hand move-
ments. The experimental results showed that our model 
exceeded SOTA methods in both accuracy and inference 
speed. The contribution of the paper can be summarized 
as follows:

•	 A MAF module is proposed to adaptively capture 
different scales of spatiotemporal features, and the 
extracted features are fused to improve the accuracy 
further. The details in Section II, Part A.

•	 The PE module is proposed to capture the global 
information while reducing the time complexity. The 
details are in Section II, Part B and C.

•	 A smoothing module is proposed to reduce fluctua-
tions. The details are in Section II, Part D.
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•	 The proposed model can predict up to 40 hand 
movements and achieves the highest predicting 
accuracy compared with other SOTA methods. The 
lightweight design strategy enables the model to be 
deployed on wearable devices, which means great 
potential in real applications.

The proposed method
The Multi-Scale Attention Fusion (MAF) part uses three 
convolution operations with kernel sizes of 3, 5, and 7 
to connect the ECA channel attention module. Then it 
adds up the results of the three operations to enhance the 
channel features of the input feature map while preserv-
ing the size.

The Patch Encoder (PE) section first divides the input 
data into multiple patches and adds positional informa-
tion. Then, the Transformer Encoder extracts advanced 
features from the information to obtain the predicted 
joint angles.

The smoothing layer utilizes a small amount of his-
torical data to process larger predicted values, to fit the 
actual human motion data.

A. Features
To reduce latency and ensure an accurate representation 
of effective information, we employed a sliding window 
of 100-ms duration, with 0.5-ms stride length to extract 
features from each sEMG channel. We extracted the 
following features from these intervals. From the light-
weight feature set, we selected three sEMG features [23]: 
Zero Order Moment, Shake Expectation, and Unbiased 
Standard Deviation. The formulas used for the calcula-
tion of these features are presented below:

1) Zero Order Moment (ZOM)
Extracting the zero-order moment from time domain 
signals allows for the representation of muscle contrac-
tion strength through the square root of the zero-order 
moment. Adjusting the magnitude of its value using the 
logarithmic function brings it closer to the inverse char-
acteristic. The expression for the square root character-
istic of the electromyographic zero-order moment is 
denoted as m0.

where N  represents the length of the sliding window, and 
x[i] , i = 1, 2, ...,N  represents the sEMG signal with a time 
length of N .

(1)m0 = Log

(√
N−1∑
i−0

x[i]2

)

2) Shake Expectation (SE)
In the field of sEMG processing, the expectation (Shak-
ing Expectation, SE) of the EMG amplitude change speed 
can be expressed by the mean value of the absolute value 
of the second derivative. Calculated as follows:

where �2 represents the second derivative.

3) Unbiased Standard Deviation (USTD)
Here, the unbiased standard deviation based on Bessel 
correction is used to reflect the degree of dispersion of 
the sEMG data. It is calculated as follows:

where x̂ represents the expected value of the sEMG 
sample.

B. Multi‑scale Attention Fusion (MAF)
Essentially, the MAF module is the combination of multi-
scale convolution and Efficient Channel Attention (ECA) 
modules [26] (Fig. 1). The kernel size of convolution is 3, 
5, and 7 in this study. Multi-scale convolution is used to 
obtain the local temporal features. ECA employs a global 
average pooling technique to extract global features. A 
one-dimensional convolution operation is attached to 
ECA to learn inter-channel interactions. The kernel size 
of the one-dimensional convolution is crucial as it deter-
mines the interaction between channels. The kernel size k 
can be calculated by the following formula:

where | t |odd represents the odd number closest to t . C 
denotes the channel dimension (i.e., number of filters).

In this study, we employ the ECA method to extract 
sEMG features between channels. This allows us to 
extract temporal scale information and inter-channel 
spatial information simultaneously. Finally, we combine 
the information from each feature branch to obtain a 
multi-scale feature representation X ′ ∈ R

W×1×C , which 
represents the extracted features:

where f n×1;C denotes C convolutional operations with 
n× 1 kernels, σ denotes the ELU activation function, and 
E denotes the ECA channel attention module. n1, n2, and 

(2)SE = 1
N

N−1∑
i=0

∣∣�2x[i]
∣∣

(3)USTD =
√

1
N−1

∑N−1
I=0 |x[i]− x|2

(4)k = ψ(C) =
∣∣∣ 12 log2(C)+

1
2

∣∣∣
odd

(5)X ′ = F(n1)+ F(n2)+ F(n3)

(6)F(n) = E
(
σ
(
f n×1;CX

))
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n3 denote different convolutional kernel sizes, which are 
set to 3, 5, 7 in this paper.

C. Patching Encoder (PE)
Patching Encoder (PE) consists of two processes: Patch-
ing Layer and Transformer Encoder. The patching layer 

divides the input data into multiple patches first, and 
after linear transformation, adds positional information 
as input information for the encoder. The Transformer 
Encoder consists of multi-head attention modules and 
multilayer perceptron modules, which can effectively 
extract advanced features of information and capture 

Fig. 1  The model structure of the continuous hand movement estimation method based on sMAPEN for sEMG signal. A shows the overall 
flowchart, first extracting features from the raw sEMG, and then dividing the features into 100 ms (200 sampling points) slices for prediction 
by the model. Where ZOM, SE, and USTD denote three sEMG features: Zero Order Moment, Shake Expectation, and Unbiased Standard Deviation, 
respectively. “Concat” refers to the operation of splicing two matrices according to corresponding dimensions [24]. B is the specific structure 
of the sMAPEN model. Where Conv-3 represents convolutional computation using a convolutional kernel size of 3, Elu refers to the activation 
function, ECA represents the Efficient Channel Attention Module, and Add stands for computing sums [26]. C shows the structural details of the ECA 
module, where GAP represents global average pooling, k represents dynamic convolution kernel size, σ represents the activation function, 
and represents channel multiplication [25]
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their complex relationships. And then ultimately obtain-
ing predicted joint angles.

1) Patching Layer
Before feeding the multi-scale feature fused signal X ′ into 
the encoder, we divide it into several non-overlapping 
patches, denoted as Xp =

{
x1p, x

2
p . . . x

m
p

}
 . The length of 

each patch is C , so the number of patches is m = W /C . 
Unlike traditional Transformer-based models, we do not 
treat each time point as a token, we treat each patch as a 
token. We linearly project each token to dimension d of 
the model through an embedding matrix E and then fed 
it into a normal Transformer encoder directly. E is ran-
domly initialized while initializing the model. During the 
training process, each element is randomly selected and 
continuously optimized through a backpropagation algo-
rithm and gradient descent to transform patches into 
more meaningful feature representations.

Since sEMG signal is a special type of time series, its 
sampling points at each time step do not have clear 
semantic meanings like words in a sentence. Therefore, 
extracting local semantic information is crucial for ana-
lyzing the relationships between them. Compared to 
many previous methods that only use token-level input 
point by point, we adopted the approach of aggregating 
the time steps into sEMG subsequence-level patches. 
This not only enhances locality but also captures compre-
hensive semantic information that is not available at the 
point level.

Additionally, dividing sEMG signals into fragment 
sequences brings another benefit: it can reduce the com-
putational complexity so thus improving the efficiency 
of the model. The original attention mechanism has a 
time and space complexity of O(N2). However, by using 
patching, the number of input tokens can be reduced 
from input sequence length L to approximately L/S . 
This reduces the memory usage and computational com-
plexity of the attention map by a factor of S , resulting in 
improved computational efficiency. Furthermore, to pre-
vent overfitting, parameters in our prediction head will 
also be reduced by a factor of S.

What should be noted is that sEMG signals have a spe-
cific order, if the order is changed, the meaning of the 
input signal will also change accordingly. However, the 
transformer’s architecture does not model positional 
information, so the order of the input sequence needs to 
be encoded explicitly. In this study, we employ a learnable 
1D position embedding matrix Epos ∈ R

n×d to capture 
position information. The learnable 1D position embed-
ding matrix has the same dimension as patch embedding, 
and each row corresponds to the position information of 
a patch in the image. At the beginning of training, Epos 

will be randomly initialized, and then continuously opti-
mized through gradient descent during the training pro-
cess. Patch sequence have been generated with location 
information can be expressed as:

where x1p, x
2
p . . . x

m
p  represents the patch partitioned 

from the input data, E and Epos respectively represent 
the linear transformation matrix and positional embed-
ding matrix. First, divide the input data into multiple 
patches, and each patch is first transformed with a linear 
transformation E to obtain an embedding vector, which 
is the token. After obtaining all the tokens, add position 
information, i.e. Epos , to these tokens, and these token 
sequences are the input information of the encoder.

2) Transformer Encoder
Next, we input the patch with positional information into 
the encoder. We adopt N  identical encoders to extract 
relevant information from the sEMG signal, each con-
sisting of a multi-head self-attention block (MSA) and a 
multi-layer perceptron (MLP) [28]. For ease of descrip-
tion, we denote the input of each layer of the encoder as 
Zl ( l = 1,2 . . .N).

Multi‑Head Self‑Attention  The multi-head attention 
module is composed of multiple self-attention layers. The 
function of the self-attention layer is to capture the corre-
lation between different vectors in the sequence of sEMG 
features, and aggregate global contextual information to 
update each component of the sequence.

Therefore, for a series of input segments Zl , we first 
transform the input vectors into three different vec-
tors: query vector q , key vector k , and value vector v , 
with dimensions of dq=dk=dv=D . Vectors from different 
inputs are packed into three different matrices, namely 
Q,K  , and V  . The formula for computing the attention 
function between different input vectors is as follows:

Multi-head attention allows the model to use multiple 
attention heads to focus on different parts of the input 
sEMG patch in different ways. Assuming there are h 
heads, each head has a dimension of dh = D/h . First, we 
calculate the output result headi for each attention head, 
then concatenate the output of multiple attention heads 
according to their respective dimensions and project the 
result into a matrix, which can be achieved through the 
following process:

(7)Z0 =
[
x1pE; x2pE; . . . xmp E

]
+ Epos

(8)Attention(Q,K ,V ) = softmax

(
Q·KT√

dk

)
· V
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where Qi , Ki , and Vi respectively represent Q,K ,V  in 
the calculation process of the i-th attention head, and 
W ∈ R

D×D is a linear projection matrix.
To slow down the degradation of the network and 

accelerate the training speed, this module adds skip con-
nections and layer normalization operations, the formula 
is as follows:

Multi‑layer Perceptron (MLP)  The MLP consists of two 
linear transformation layers, a dropout layer, and a non-
linear activation function called a Gaussian Error Linear 
Unit (GELU). The linear transformation layer of MLP 
maps the input data Z to a higher dimensional space, 
helping the network integrate information. The dropout 
layer is used to avoid overfitting. Then filter through the 
nonlinear activation function, and change the data back to 
the original dimension after filtering. Inspired by [27], we 
finally chose GELU instead of the commonly used ReLU 
due to its higher accuracy on numerous datasets. There-
fore, MLP can be described as:

where W1 and W2 represent the parameter matrices of the 
two linear layers, respectively, and δ represents the acti-
vation function GELU.

As with the multi-head attention module, a residual 
block and a normalization layer are also added here:

Prediction Layer  To avoid feature redundancy, average 
pooling was first used to further compress the features, 
and then a linear layer was used to make predictions, 
resulting in the predicted joint angles y.

D. Smooth Layer
Based on the preliminary results of experiments, the net-
work predictions have certain fluctuations, which may 
cause the joint angle sequence to not match the smooth-
ness of biological movements. Therefore, a smoothing 
module is introduced to smooth the predicted joint angle 
signals. The module can use a small amount of historical 
joint angles to handle some predicted values with larger 

(9)headi = Attention(Qi,Ki,Vi)

(10)Multihead = Concat(head1 . . . headh)W

(11)Zl = Multihead
(
LN

(
Zl−1

))
+ Zl−1

(12)MLP(Zl) = W2δ(W1Zl)

(13)Z′
l = MLP(LN (Zl))+ Zl

(14)y = Linear
(
AvgPooling

(
Z′
l

))

errors, making them more consistent with actual human 
movements and improving the robustness of the model. 
The specific implementation method is described as 
follows:

where y is the output of MAPEN, L represents the win-
dow length, and α represents the smoothing coeffi-
cient. According to Fig.  1. We set L and α to 4 and 0.3, 
respectively.

Experiments and results
A. Dataset
The dataset we selected comes from the Ninapro data-
base [2], which is a publicly available sEMG data set 
widely used for hand motion prediction. It contains 
several different sub-datasets (DB1-DB10), to ensure 
the diversity of subjects and movements, we choose the 
second database DB2 [29, 30], which contains 40 kinds 
of hand movements made by 40 subjects. Repeat each 
action 6 times, hold for 5 s, and then rest for 3 s. The gen-
der, age, height, weight, and handedness range of the 40 
subjects are as follows: 29 males/11 females, 23–45, 150–
192 cm, 44–105 kg, 5 left /35 right.

During data acquisition, sEMG was recorded using a 
Delsys Trigno wireless system consisting of 12 wireless 
sEMG electrodes, and hand movements were measured 
using a 22-sensor Cyber Glove II. The sampling rates of 
Cyberglove II and Delsys are 20 and 2000 Hz respectively. 
To keep the two signals in sync, the first kinematics signal 
was resampled to 2000 Hz. We selected 40 common hand 
gestures as the research objects, including 8 gestures with 
equal length and tension, 23 grasping and functional 
movements, and 9 basic wrist movements (excluding 
hand strength testing movements). When selecting the 
predicted joints, we chose the proximal interphalangeal 
joint (PIP), metacarpophalangeal joint (MCP), and wrist 
joint as the estimated joints. The distal interphalangeal 
joint (DIP) can be easily calculated from PIP and MCP. 
Therefore, these 12 joints are sufficient to describe hand 
movements.

B. Processing
After extracting features in the Features section, we 
concatenated the three different features in the chan-
nel dimension. We performed linear normalization to 

(15)y′i =
L∑

i=1

yi

L

(16)s0 = y′1 + y′2 + y′3

(17)st = αy′t + (1− α)st−1
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avoid any feature from having a substantial impact on 
the forecast results and induce convergence of the model. 
We segmented hand kinematic signals into sequences of 
100 ms windows with a 0.5 ms step, similar to the pro-
cessing of sEMG. The joint angle feature matrix was con-
structed using the last angle value within each window.

To complete the process of model training and testing, 
we use four out of the six repetitions performed by each 
subject as their training dataset, while the remaining two 
repetitions are allotted for testing purposes.

C. Evaluation of Parameters
To evaluate the performance of our method and compare 
it with other methods, the following evaluation criteria 
have been introduced.

Pearson correlation coefficient (CC) is a statistical 
measure utilized to evaluate the strength and direction 
of the linear relationship between two variables [31]. In 
the current study, we apply CC to evaluate both the pre-
cision and consistency of the predictive model, as well 
as the strength of the correlation between predicted and 
observed results.

NRMSE is the normalized version of the root mean 
square error (RMSE), which is typically used to assess 
the degree of deviation between predicted and actual val-
ues. Unlike RMSE, the value of NRMSE is not affected by 
the absolute size of actual values, so it can be compared 
across different datasets and problems, helping us to 
evaluate the accuracy and reliability of predictive models.

The coefficient of determination, R2, is a metric utilized 
in measuring the accuracy of predicted data. This metric 
can determine the degree to which the predictive model 
explains the actual data, with a range between 0 and 1. 
A high value of R2 shows that the predictive model can 
effectively explain actual data, and there is a minimal dif-
ference between the predicted and live results [17].
smooth is considered a quantitative measure for evalu-

ating the smoothness of a curve. Here, we use it to assess 
the smoothness of the predicted angle signal curve, 
where a larger smoothing value indicates a higher esti-
mated level of smoothness [32].

where x̂(i) are the predicted joint angles, Ts is the sam-
pling time interval, and n is the total number of angle 
sequences.

D. Experimental Results
The models were constructed based on the PyTorch 
framework [33] and were trained and evaluated on a 
GPU (NVIDIA GEFORCE RTX 3060) to ensure fairness 
during the deep learning process. Identical parameter 

(18)smooth = − 1
2n

∑n−1
i=1

∣∣∣ x̂(i)−x̂(i+1)
Ts

∣∣∣

settings such as learning rate, optimizer, and loss func-
tion were incorporated to guarantee identical training 
conditions. The models underwent 400 epochs of train-
ing, achieving convergence within that process. The ini-
tial learning rate was set at 0.001, which was decayed by 
50% in the subsequent 200 epochs. The batch size was set 
at 256 for enhanced training efficiency. As for the regres-
sion task, we adopted the widely used mean squared 
error (MSE) as the loss function. It should be noted that 
the training data was shuffled to prevent overfitting.

In this paper, we conducted a comprehensive perfor-
mance evaluation of various models by computing met-
rics including CC, RMSE, R2, and smoothness for each 
participant. Furthermore, to assess the feasibility of dif-
ferent methods in practical applications, we utilized 
RASPBERRY PI 4B as a hardware platform to measure 
their inference latency. The RASPBERRY PI 4B hardware 
has a Broadcom BCM2711 microprocessor, quad-core 
Cortex-A72 (ARM v8) 64-bit SoC running at 1.5  GHz, 
and 4 GB LPDDR4-2400 SDRAM.

To assess the performance differences between various 
models, we initially used the Friedman test for prelimi-
nary comparison, followed by the Wilcoxon signed-rank 
test for post-hoc comparisons. We adjusted the results 
using Bonferroni correction. The performance metrics of 
CC, NRMSE, and R2 were considered statistically signifi-
cant when p < 0.05 as dependent variables.

Firstly, we conducted performance tests on the pro-
posed sMAPEN model and compared it with simpler 
structures to establish the superiority of this method. We 
examined four structures, including MAPEN, SAPEN, 
MAEN, and PEN. Table 1 shows the components of five 
models. MAPEN removes the smoothing layer from 
sMAPEN. SAPEN replaces MAPEN’s multi-scale atten-
tion module with a single-scale attention module that 
utilizes a convolutional kernel size of 7. MAEN removes 

Table 1  Composition of five models

1. Y and N respectively indicate the presence and absence of this part in the 
model

2. MAF is the multi-scaled attention module that utilizes 3 convolutional kernel 
size of 3, 5 and 7 respectively.

3. AF is the single-scaled attention module that utilizes only one convolutional 
kernel size of 7.

4. ’s’ indicates that a smoothing layer is added to the model.

Model Attention 
fusion

Patch layer Transformer 
encoder

Smooth layer

sMAPEN MAF Y Y Y

MAPEN MAF Y Y N

sAPEN AF Y Y Y

MAEN MAF N Y N

PEN – Y Y N
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the patching operation from MAPEN. PEN drops the 
multi-scale attention module from MAPEN.

The results of the comparative analysis of the pre-
dictive performance (CC, NRMSE, R2) of five models 
are presented in Fig.  2. The figure also displays the sta-
tistical analysis results. The results demonstrate that 
the proposed models’ modules considerably enhance 
the predictive accuracy. To demonstrate the effective-
ness of Patching, we compared MAPEN and MAEN 
and observed a considerable enhancement in predictive 
performance after incorporating Patching. Specifically, 
we observed a 6.9% improvement in the CC, a 0.0520 
decrease in NRMSE, and a 0.2195 improvement in R2. In 
addition, we investigated the impact of the convolution 
module by comparing PEN, SAPEN, and MAPEN. Our 
results showed that compared to PEN without a convo-
lution module, SAPEN with a single-scale convolution 
module exhibited a slight performance improvement. 
However, upgrading the single-scale module to a multi-
scale convolution module led to a further improvement in 
performance. Specifically, we observed a 3.3% improve-
ment in the CC, a 0.0093 decrease in NRMSE, and a 
0.0638 improvement in R2 for MAPEN as compared to 
PEN, indicating that the multi-scale convolution mod-
ule is capable of extracting more diverse sEMG features, 
thereby enhancing the overall predictive performance of 
the model. Lastly, we also evaluated the effectiveness of 
the smoothing module by comparing the performance of 
sMAPEN and MAPEN. Our results showed that after the 
addition of the smoothing module, the CC was improved 
by 3.2%, the NRMSE decreased by 0.0141, and the R2 
was improved by 0.0856. We conducted a significant 
analysis of the performance of various models. Firstly, 

we conducted the Friedman test, which revealed a sta-
tistically significant difference in the performance of the 
methods, with a p-value less than 0.001. We then applied 
the Wilcoxon signed-rank test for a pairwise compari-
son of the methods. Apart from (sMAPEN, MAPEN), all 
other p-values were less than 0.001. The findings suggest 
that our proposed model can significantly enhance the 
predictive accuracy of sEMG signals and achieve a high 
level of performance through the refinement and optimi-
zation of the modules.

The comprehensive performance of several deep learn-
ing models in finger joint estimation is shown in Table 2, 
where the evaluation indicators are the average values 
of all joint angles and all subjects. As shown, sMAPEN 
achieves the best performance, with average CC, NRMSE, 
and R2 values of 0.9082 ± 0.0216, 0.0646 ± 0.0074, and 
0.8163 ± 0.0398, respectively, which are significantly bet-
ter than those of sBERT (0.8520 ± 0.0285, 0.0926 ± 0.0083, 
0.6276 ± 0.0655), MAFN (0.8493 ± 0.0289, 0.0964 ± 0.0108, 
0.6008 ± 0.0820), LSTM [32]. (0.7742 ± 0.0392, 
0.0991 ± 0.0106, 0.5788 ± 0.0692), CNN-ATTENTION 
[34] (0.8202 ± 0.0363, 0.1030 ± 0.0101, 0.5391 ± 0.0992), 
and TCN (0.7421 ± 0.0414, 0.1009 ± 0.0095, 
0.5529 ± 0.0639). In addition, sMAPEN’s performance 
variance is also smaller, indicating that its performance is 
more stable and consistent across different subjects. Sta-
tistical analysis shows that the proposed sMAPEN model 
is superior to the other four deep learning models in 
terms of CC, NRMSE, and R2 (p-value < 0.001).

Then we compared the estimation accuracy of differ-
ent subjects separately, as shown in Fig. 3. In Fig. 3A–C, 
our proposed sMAPEN provided high CC (> 0.8336), 
low NRMSE (< 12.6235), and high R2 (> 0.6885) for each 

Fig. 2  Comparison results of sMAPEN and its sub-models. A–C denote the results of CC, NRMSE, and R2, respectively. MAPEN removes 
the smoothing layer from sMAPEN. SAPEN replaces MAPEN’s multiscale attention module with a single-scale attention module that utilizes 
a convolutional kernel size of 7. MAEN eliminates the patching operation from MAPEN. PEN eliminates the multiscale attention module from MAPEN
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subject, with sBERT performing second best, while the 
performances of CNN-Attention, LSTM, and TCN were 
significantly worse, especially in the predictions of the 
4th and 28th subjects, where the prediction accuracy of 
the other models decreased significantly, but sMAPEN 
still maintained high accuracy, which proves its stronger 
generalization ability. In Fig. 3D, we have calculated the 
prediction smoothness of several models and found 
that sMAPEN performs the best (−  0.4545 ± 0.0712), 
slightly better than sBERT (−  0.9764 ± 0.13269) and 
MAFN (−  1.0691 ± 0.1577), and significantly better 
than CNN-ATTENTION (−  2.6520 ± 0.4144), LSTM 
(−  2.4003 ± 0.3277), and TCN (−  2.1308 ± 0.3109). Fig-
ure  4 provides a visualization of the prediction perfor-
mance of each model, demonstrating the predictive 
performance of the five models on Subject 1. Com-
pared to the other models, sMAPEN predicts joint angle 
curves that are more stable, accurate, and in line with 
the smoothness of human motion. The second place is 
sBERT, with basic accuracy in predicting the trend of the 
angle signal and relatively stable fluctuations. Although 
CNN-Attention, LSTM, and TCN can also predict the 
corresponding angle signal trend, the predicted signal 
fluctuations are relatively large, resulting in distortions in 
some of the movements.

Table  3 presents the inference time of the methods 
on portable devices. Inference time refers to the dura-
tion required for a model to estimate hand movements 
from surface electromyography signals. A longer infer-
ence time could adversely impact user experience. The 
results demonstrate that TCN exhibits the smallest infer-
ence latency (less than 50  ms), slightly outperforming 
our proposed sMAPEN (less than 100  ms), followed by 
CNN-Attention and MAFN. These methods can all meet 
the deployment performance requirements (< 200 ms) for 
continuous motion estimation. However, the inference 
time for both sBERT and LSTM exceeds 200 ms, making 

it challenging to meet deployment requirements in prac-
tical applications.

Discussion
This paper proposes a method, sMAPEN, for estimating 
continuous hand movements on a large scale. We evalu-
ated sMAPEN on 40 participants and compared its per-
formance with four advanced hand movement estimation 
models. The performance of each model was quantified 
using various indicators, such as CC, RMSE, and R2, and 
statistically analyzed.

Based on the results provided in the previous section, 
our proposed method, Multi-scale Attention Patch-
ing Encoder Network (sMAPEN), demonstrated higher 
accuracy and stability across participants and joints 
than the other four models, as confirmed by statistical 
tests. Our analysis suggests that this may be due to the 
model’s memory requirements shifting from requiring 
less memory to needing more memory when the number 
of movements increased to 40. However, the Temporal 
Convolutional Network (TCN) method had a relatively 
small receptive field and could not handle the increased 
memory requirements, resulting in decreased perfor-
mance compared to situations with fewer movements.

While LSTM has mitigated the issue of long-term 
dependency, it still encounters difficulties when process-
ing longer sequences. The growth of sequence length 
caused by the expansion of movement combinations 
might degrade the estimation performance of LSTM. 
Both LSTM and TCN depend on preceding signal infor-
mation to capture the entire sequence’s global informa-
tion. Yet, previous noise might impact subsequent signal 
samples and thereby alter the predictions made.

Compared to TCN and LSTM, CNN-Attention 
combines convolution with an attention mechanism 
to significantly improve accuracy. The same MAFN 
and sBERT use the multi-head attention mechanism 
to capture both local and global relationships in the 

Table 2  Average accuracy of various models on 12 joints and 40 movements over 40 subjects

1. The CNN-Attention is a convolutional model with an attention mechanism proposed in [33]

2. MAFN is the multi-attention feature fusion network proposed in [24]

3. ’s’ indicates that a smoothing layer is added to the model

4. P-VALUE refers to the significance test results of sMAPEN and this method

Model CC NRMSE R2 Smooth P-value

TCN 0.7421 ± 0.0414 0.1009 ± 0.0095 0.5529 ± 0.0639 − 2.1308 ± 0.3109  < 0.001

LSTM 0.7742 ± 0.0392 0.0991 ± 0.0106 0.5788 ± 0.0692 − 2.4003 ± 0.3277  < 0.001

CNN-attention 0.8202 ± 0.0363 0.1030 ± 0.0101 0.5391 ± 0.0992 − 2.6520 ± 0.4144  < 0.001

MAFN 0.8493 ± 0.0289 0.0964 ± 0.0108 0.6008 ± 0.0820 − 1.0691 ± 0.1577  < 0.001

sBERT 0.8520 ± 0.0285 0.0926 ± 0.0083 0.6276 ± 0.0655 − 0.9764 ± 0.1326  < 0.001

sMAPEN 0.9082 ± 0.0216 0.0646 ± 0.0074 0.8163 ± 0.0398 − 0.4545 ± 0.0712 –
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Fig. 3  Average performance of 40 movements on 40 subjects. A–D denote the average results of CC, NRMSE, R2, and smooth, respectively

Fig. 4  Curve chart of joint angles predicted based on sMAPEN and other methods and the actual joint angles. The red curve represents 
the ground truth, and the blue curve represents the estimated value. The horizontal axis represents the input features, one sampling point denotes 
a concatenation of features and the vertical coordinates represent the magnitude of the joint angles. Only two joints are shown in the figure 
to better display the estimated details, which can represent the estimation quality of all joints. A The actual curves of joint angles and the curves 
of joint angles predicted by TCN. B The actual curves of joint angles and the curves of joint angles predicted by LSTM. C The actual curves of joint 
angles and the curves of joint angles predicted by CNN-Attention. D The actual curves of joint angles and the curves of joint angles predicted 
by sBERT. E The actual curves of joint angles and the curves of joint angles predicted by sMAPEN

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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sEMG signal in a single step, which reduces the effect 
of noise in the previous signal on the subsequent sig-
nal, and the accuracy of prediction is greatly improved. 
Our sMAPEN model has shown further improvement 
compared to MAFN and sBERT, possibly because it 
can capture local features of sEMG signals at differ-
ent granularities in both time and space dimensions 
through the MAF module. It aggregates time steps into 
sEMG sub-sequence patches through a patching opera-
tion, integrating information within a segment. This 
further maintains the locality of the sEMG sequence. 
Finally, it utilizes a multi-head attention mechanism 
to capture comprehensive semantic information that is 
not available at the point level. It is worth noting that 
we captured the local and global relationships of sEMG 
signals in a single step, without being affected by pre-
vious noise. Additionally, the smoothing module plays 
a crucial role in achieving exceptional performance. It 
corrects angle prediction errors by utilizing previously 
predicted joint angles, resulting in smoother angle sig-
nals that demonstrate greater consistency with actual 
human motion.

After comparing the performance of the models, we 
evaluated their inference latency on mobile devices. 
The results showed that TCN had the lowest inference 
cost due to its convolutional structure and the least 
number of parameters. Following that were sMAPEN, 
CNN-Attention, and MAFN, which both supported 
parallel computing and had low latency. In contrast, 
due to the larger number of parameters, the inference 
latency of sBERT increased significantly. Additionally, 
the unique recurrent structure of LSTM hindered par-
allel computing, resulting in relatively high inference 
costs, which did not meet the deployment requirement.

In practice, the changes in skin condition and elec-
trode placement may alter the data distribution, which 
may reduce the accuracy of the model. To investigate 
the robustness of the model, we conducted artificial 
simulations to test the impact of noise on the prediction 

results. During the simulation experiment, we included 
Gaussian white noise in the test dataset, with a sig-
nal-to-noise ratio of 20  dB. The outcomes depict that, 
despite adding noise, the sMAPEN model managed 
to maintain an average accuracy of 0.88, exhibiting 
a decrease of less than 3% in contrast to other mod-
els, which demonstrated a reduction of more than 5%. 
The results suggest that sMAPEN presents enhanced 
robustness when compared to other models.

Our model has some limitations. Firstly, we only 
selected healthy participants as experimental subjects, 
which could introduce potential bias and may not guar-
antee the predictive performance of the model for peo-
ple with disabilities, leading to a lack of validation of the 
model’s generalizability. Secondly, the model’s robustness 
was only validated by artificially adding simulated noise, 
and this method of validation is not comprehensive. In 
our future work, we plan to conduct further research to 
assess the impact of various factors, such as the different 
types of noise, electrode displacements, and arm posi-
tion on the model. Besides, although the robustness of 
the model was verified through manual noise simulation 
in this article, this verification method is not comprehen-
sive. In the future, we will strive to include more types of 
noise and more complex scenarios to evaluate the robust-
ness of the model comprehensively. In addition, there 
may be user differences in practical applications, and dif-
ferent users may have different operating habits or physi-
ological characteristics, which may affect the model’s 
performance. In future research, we will design models to 
adapt to the behavior of different users [37], which can be 
achieved through online learning or incremental learn-
ing. The model will continuously learn and improve from 
user usage.

Conclusion
In this study, we propose a lightweight model called 
sMAPEN while accurately estimating the continuous 
hand movements, it can also maintain compatibility with 
multiple movements. A multi-scale convolutional fusion 
module was designed specifically to extract multi-scale 
temporal and spatial information from the sEMG. Fur-
thermore, a multi-head attention mechanism was also 
added to extract global information from the sEMG. 
Conducting patch operations on the sEMG contributed 
significantly to enhancing the accuracy of prediction 
and reducing the number of model parameters. We also 
incorporated a smoothing module which improved the 
model’s performance in generating realistic predicted 
angle signals. To assess our proposed sMAPEN, we select 
several representative methods (TCN, LSTM, CNN, 
MAFN, and sBERT) to benchmark with the proposed 
sMAFN. The experimental results indicate that sMAFN 

Table 3  Inference time (IT) of different models on the raspberry 
PI 4B 

1. The result is the average reasoning time of 40 subjects on the device

Model Inference 
time (ms)

TCN 44.12

LSTM 419.96

CNN-attention 132.21

MAFN 165.87

sBERT 320.46

sMAPEN 97.93
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outperformed the alternatives by providing higher accu-
racy and stability while maintaining a fast speed. We 
extended the predicted movements to 40 types, which 
covered most of the static hand gestures and functional 
movements in our daily lives. The latency of this algo-
rithm is only 97.93 ms, which meets the practical appli-
cation requirements of wearable devices. These results 
demonstrate sMAPEN has significant potential in the 
field of HMI.
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