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Abstract
Background  Neural activation induced by upper extremity robot-assisted training (UE-RAT) helps characterize 
adaptive changes in the brains of poststroke patients, revealing differences in recovery potential among patients. 
However, it remains unclear whether these task-related neural activities can effectively predict rehabilitation 
outcomes. In this study, we utilized functional near-infrared spectroscopy (fNIRS) to measure participants’ neural 
activity profiles during resting and UE-RAT tasks and developed models via machine learning to verify whether task-
related functional brain responses can predict the recovery of upper limb motor function.

Methods  Cortical activation and brain network functional connectivity (FC) in brain regions such as the superior 
frontal cortex, premotor cortex, and primary motor cortex were measured using fNIRS in 82 subacute stroke patients 
in the resting state and during UE-RAT. The Fugl-Meyer Upper Extremity Assessment Scale (FMA-UE) was chosen 
as the index for assessing upper extremity motor function, and clinical information such as demographic and 
neurophysiological data was also collected. Robust features were screened in 100 randomly divided training sets 
using the least absolute shrinkage and selection operator (LASSO) method. Based on the selected robust features, 
machine learning algorithms were used to develop clinical models, fNIRS models, and combined models that 
integrated both clinical and fNIRS features. Finally, Shapley Additive Explanations (SHAP) was applied to interpret the 
prediction process and analyze key predictive factors.

Results  Compared to the resting state, task-related FC is a more robust feature for modeling, with screening 
frequencies above 90%. The combined models built using artificial neural networks (ANNs) and support vector 
machines (SVMs) significantly outperformed the other algorithms, with an average AUC of 0.861 (± 0.087) for the 
ANN and an average correlation coefficient (r) of 0.860 (± 0.069) for the SVM. Furthermore, predictive factor analysis 
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Background
More than two-thirds of stroke survivors have upper limb 
dyskinesia, which seriously affects their quality of life and 
social interactions [1]. Improving upper limb motor func-
tion has therefore become a key goal of rehabilitation 
therapy [2]. However, the heterogeneity among patients 
makes it challenging to assess rehabilitation potential in 
the early stages and may hinder the selection of optimal 
rehabilitation strategies. Therefore, it is particularly criti-
cal to identify predictors of rehabilitation, which are not 
only central to assessing rehabilitation potential, but also 
provide the basis for individualized treatment plans.

In recent years, machine learning algorithms such as 
support vector machines (SVMs) have been used to iden-
tify predictors of the potential for rehabilitation, such as 
time since stroke and initial FMA-UE scores [3–5]. These 
indicators provide a basis for predicting rehabilitation, 
but they lack sufficient sensitivity to distinguish subtle 
differences in patients’ functional status. After a stroke, 
the brain compensates for damaged areas by reorganizing 
neural networks. Therefore, functional connectivity (FC) 
between neural networks becomes a powerful indicator 
to characterize brain damage [6–8]. Studies based on 
functional magnetic resonance imaging (fMRI) and elec-
troencephalography (EEG) have shown that FC at rest 
correlates with functional impairment of the upper limb 
and is a valid biomarker for predicting motor recovery 
[9–11]. However, recent studies have shown that FC in 
the task state (task-FC) more directly reflects differences 
in functional compensation within the impaired region, 
whereas these differences are not apparent in the rest-
ing state [12, 13]. This may be because the brain allocates 
more neural resources to task-related processing, reduc-
ing noise and nonsmoothness, thereby revealing individ-
ual differences more effectively [14, 15].

In this context, effectively utilizing external tasks to 
elicit functional responses in patients is key to assessing 
rehabilitation potential. Upper Extremity Robot-Assisted 
Rehabilitation Training (UE-RAT) simulates real move-
ment tasks by precisely controlling parameters, making 
the neural responses it evokes more compatible with the 
demands of daily life. Furthermore, incorporating visual 
and auditory stimuli in UE-RAT enhances interregional 

brain interactions and elicits more comprehensive brain 
functional response patterns [16, 17]. These properties 
allow UE-RAT-induced neural activity to effectively char-
acterize adaptive changes in the brain following a stroke 
and reveal subtle differences in rehabilitation potential 
[18, 19]. However, it is important to note that the applica-
tion of fMRI and EEG during UE-RAT tasks may be lim-
ited due to environmental constraints and sensitivity to 
motion.

fNIRS is an emerging neuroimaging tool that provides 
information on regional neural activity by noninvasively 
monitoring changes in oxygenation and deoxyhemoglo-
bin concentrations [20]. Due to its resistance to motion 
artifacts and its ability to adapt to freely moving sub-
jects, it has become an ideal method for assessing neural 
activation during rehabilitation training [21]. Research 
using fNIRS has demonstrated that patients with vary-
ing degrees of upper limb impairment exhibit differences 
in FC patterns at rest [22]. Further research, such as the 
studies by Huo [23] and Xie [24], indicates that these dif-
ferences are more pronounced among patients during 
UE-RAT tasks. These results suggest that using fNIRS 
to measure changes in FC in the UE-RAT task using 
fNIRS can amplify individual differences, which provides 
an effective tool for accurately assessing rehabilitation 
potential.

The functional status of stroke patients is critical to 
rehabilitation prognosis, and the completion of UE-
RAT requires activation of the nervous system that con-
trols the patient’s upper limb movements. Therefore, we 
hypothesize that the neural activity of stroke patients 
during UE-RAT reflects their functional status. By ana-
lyzing these task-related neural activities, it is possible 
to quantify the patient’s functional status and use it as a 
quantitative indicator of rehabilitation prognosis. There-
fore, the aim of our study is to utilize fNIRS to compute 
features such as cortical activation and FC in subacute 
stroke patients both at rest and during UE-RAT training. 
Subsequently, we will employ the LASSO algorithm to 
identify robust features and use machine learning algo-
rithms to construct a predictive model for upper limb 
motor function recovery. Through this approach, we 

of the models revealed that FC measured during tasks is the most important factor for predicting upper limb motor 
function.

Conclusion  This study confirmed that UE-RAT-induced FC can serve as an important predictor of rehabilitation, 
especially when combined with clinical information, further enhancing the accuracy of model predictions. These 
findings provide new insights for the early prediction of patients’ recovery potential, which may contribute to 
personalized rehabilitation decisions.

Keywords  Functional near-infrared spectroscopy, Prediction model, Robot-assisted therapy, Upper extremity, Stroke 
rehabilitation
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aim to explore the value of the neural activity character-
istics induced by UE-RAT in relation to rehabilitation 
prognosis.

Method
Participant
A retrospective analysis was conducted on eighty-two 
subacute stroke participants who underwent rehabili-
tation treatment at the Third Affiliated Hospital of Sun 
Yat-sen University from October 2021 to May 2023. The 
inclusion criteria were as follows: (1) onset between 1 
week and 6 months, (2) first stroke with a definite diag-
nosis by cranial CT or MRI, (3) absence of obvious cog-
nitive and language dysfunction (MMSE > 21 points), 
and (4) age > 18 years. The exclusion criteria were as 
follows: (1) neurological disorders other than stroke 
that can cause movement disorders, such as Parkinson’s 
disease, spinal cord injury, or traumatic brain injury; 
(2) pregnancy, breastfeeding, or the use of a powered 
implantable cardiac device to monitor or support cardiac 
function; and (3) new infarct foci or worsening second-
ary to bleeding. The trial was registered with the China 
Clinical Trial Registry (CCTR) under registration num-
ber ChiCTR2100054527 on December 19, 2021 and was 
approved by the Institutional Review Board of the Third 
Affiliated Hospital of Sun Yat-sen University under num-
ber 20,210,233,301.

The following categories of data were obtained from 
the electronic medical record (EMR) system to form 
the clinical feature set: (1) demographic data, including 
age, sex, education level, height, and weight; (2) stroke 
characteristics, including stroke type, onset time, stroke 
location, and hemiparesis side; (3) neurophysiological 
data, including the presence of motor evoked potentials 
(MEPs), average wave amplitude, and average latency 
on the healthy/affected side; (4) comorbidities, includ-
ing history of heart disease, diabetes, hypertension, 
hyperlipidemia, and hyperuricemia; (5) laboratory data, 
including the levels of albumin, blood glucose, uric acid, 
cholesterol, triglycerides, fibrinogen, D-dimer, hemoglo-
bin, white blood cells, and red blood cells; (6) vital signs, 
including temperature, heart rate, respiratory rate, sys-
tolic blood pressure, and diastolic blood pressure; and 
(7) clinical assessment data, including the Fugl-Meyer 
Assessment of Upper Extremity (FMA-UE), the Modified 
Barthel Index (MBI), the National Institutes of Health 
Stroke Scale (NIHSS), and the Mini-Mental State Exami-
nation (MMSE).

Treatment process
Within the first week of admission, clinical measure-
ments, including FMA and manual muscle testing 
(MMT), among others, were conducted by a licensed 
physical therapist. Subsequently, the UE-RAT training 

mode was adjusted based on the MMT results of the par-
ticipants’ hemiplegic upper limbs. Specifically, muscle 
strength levels 0–1 corresponded to passive movement 
(severe group, n = 32), levels 2–3 corresponded to assisted 
movement (moderate group, n = 35), and level 4 and 
above corresponded to resistive movement (mild group, 
n = 15). Throughout the inpatient rehabilitation period, 
all participants received daily 20-minute sessions of 
robot-assisted task-oriented upper limb exercise training. 
In addition to RAT therapy, patients are also required to 
undergo daily physical therapy, including transfer func-
tion training (10 min), balance training (20 min), endur-
ance training (20  min), and neuromuscular electrical 
stimulation (20 min). Furthermore, they receive occupa-
tional therapy consisting of neurodevelopmental therapy 
(15  min), therapeutic task-oriented activities (15  min), 
and training in activities of daily living (15  min). These 
therapies were administered to each patient once per day, 
five days a week, for two consecutive weeks. The train-
ing was administered by professional therapists in a quiet 
treatment room. Robot-assisted therapy was conducted 
using the ArmGuider device (ArmGuider, ZD Medtech 
Co., Ltd., China), a two-degree-of-freedom end-effector 
robot designed to enhance shoulder and elbow joint flex-
ibility through training in the horizontal plane.

During the preparatory phase of exercise training, 
participants sat in front of the training platform with 
their hands and forearms secured to the robotic arm 
of the device. The participants were then instructed to 
manipulate the robotic arm along a predefined trajec-
tory to perform motor and cognitive tasks according to 
the gaming scenario. For example, they controlled a net 
on the screen using the robot’s moving arm to catch but-
terflies moving in various directions. During the train-
ing, an arrow is displayed on the screen, indicating the 
direction in which the patient should apply force. After 
the patient successfully catches the butterfly, a new direc-
tional arrow appears, and the process repeats. This game 
patients will not fail, will eventually catch the butterfly, 
because it is an assisted training. RAT will automatically 
detect the patient’s active force, in a single arrival task, 
when the participant’s active force phase occupies more 
than 20% of the total trip to successfully catch a butterfly, 
the screen will show that 10 points will be awarded, and 
issued a “ding” sound. If the patient’s active participation 
is less than 20%, and the robot passively completes the 
butterfly catching, the screen will show that 1 point has 
been earned, and a “Keep going!” sound will be emitted. 
Each patient typically completes approximately 200–250 
reaching movements per training session, while tradi-
tional occupational therapy assists patients in completing 
around 60–80 upper limb training movements within a 
20-minute session.
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The Fugl-Meyer Assessment of Upper Extremity 
(FMA-UE) provides a standardized method for compre-
hensive evaluation of motor function in the shoulder, 
elbow, forearm, wrist, and fingers, as well as coordina-
tion of the hand and fingers, enabling detailed analysis 
of upper limb motor function following stroke. Hence, 
the FMA-UE score at discharge was selected as the pri-
mary outcome measure for improvement in upper limb 
motor function. The difference in scores before and after 
treatment (∆FMA-UE) was calculated, with improve-
ments exceeding 9 points serving as the threshold for the 
minimal clinically important difference (MCID) binary 
classification for subacute stroke patients [25, 26], as the 
MCID is considered a meaningful clinical improvement 
that is beneficial for patients’ daily activities postinter-
vention. Participants with ∆FMA-UE ≥ 9 were classified 
as responders.

fNIRS measurements and preprocessing
During the two-week training period, fNIRS measure-
ments were performed primarily on the first day of 
UE-RAT training. To ensure the accuracy of the mea-
surements, all participants were asked to sit quietly 
for 5–10  min prior to the measurements to eliminate 
hemodynamic responses induced by previous activity. 
Participants then completed a 10-minute resting state 
measurement in the seated state followed by a 10-min-
ute fNIRS measurement in the RAT training state. 
Multichannel tissue oxygenation monitors with con-
tinuous-wave technology (NirSmart, Danyang Huich-
uang Medical Equipment Co., Ltd., China) operating at 
wavelengths of 740 and 850 nm were utilized for fNIRS 
measurements. All differential path length factors were 
initially set to 7.0 with a sampling rate of 10 Hz. The cali-
bration function of the instrument and the correspond-
ing template were used to precisely position the channels 

to correspond with the 10/10 electrode positions based 
on different head sizes. A total of 38 measurement chan-
nels, comprising 18 light source probes and 16 detec-
tor probes, were symmetrically placed over the regions 
of the ipsilesional and contralesional prefrontal cortex 
(IPFC/CPFC), dorsolateral prefrontal cortex (IDLPFC/
CDLPFC), superior frontal cortex (ISFC/CSFC), premo-
tor cortex (IPMC/CPMC), primary motor cortex (IM1/
CM1), primary somatosensory cortex (IS1/CS1), and 
occipital cortex (IOC/COC), as depicted in Fig. 1.

After acquiring the signals for HbO2 and HHb, data 
preprocessing was performed according to meth-
ods described in our previous studies [24, 27]. fNIRS 
data preprocessing was performed with the follow-
ing procedures using customized routines in MATLAB 
(The MathWorks, Inc.). First, the absorbance signals 
recorded by fNIRS were subjected to bandpass filtering 
at 0.0095–2 Hz (zero-phase, sixth-order Butterworth fil-
ter) to reduce unrelated noise components and low-fre-
quency baseline drift. Next, principal component analysis 
(PCA) and independent component analysis (ICA) were 
conducted on the HbO2 and HHb signals of each channel 
to identify components potentially related to noise and 
artifacts, such as cardiac pulsations, respiratory signals, 
and blood pressure changes. Components exhibiting 
significant spectra in the range of 0.01–0.08  Hz, corre-
sponding to relevant temporal processes, were visually 
identified and retained, indicating functional hemody-
namic responses in the brain. Finally, a sliding average 
filter with a time window of 3  s was utilized to remove 
obvious outliers in the signals, and pseudoartifacts were 
eliminated through cubic spline interpolation.

fNIRS feature extraction
Continuous wavelet transform (CWT) is a wavelet 
analysis method used for analyzing near-infrared brain 

Fig. 1  Experimental setup. (A) Schematic representation of near-infrared spectroscopy setup, comprising 18 source probes, 16 detector probes, and 38 
measurement channels. (B) Upper limb movement training guided by robot assistance. PFC: prefrontal cortex; DLPFC: dorsolateral prefrontal cortex; SFC: 
superior frontal cortex; PMC: premotor cortex; M1: primary motor cortex; S1: primary somatosensory cortex; OC: occipital cortex
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oxygenation signals. Here, the Morlet wavelet was uti-
lized to identify oscillatory signals in the range of 0.01–
0.08  Hz as hemodynamic responses to neural activity 
[28]. By scaling the wavelet scale, the spectral informa-
tion of the frequency can be obtained, and by translating 
in time, the time information of the desired frequency 
component can be obtained. At a particular frequency ƒ 
and time point Tn, the WT wavelet coefficient is defined 
as follows:

	 wk (Tn) = Wk (f, Tn) · ei∅k(f,Tn) = ak (f, Tn) + ibk (f, Tn)

Time-domain averaging of the CWT results produced 
the wavelet amplitude (WA) of the HbO2 and HHb sig-
nals for each channel at each time and frequency. These 
values reflect the fluctuation amplitude of local cerebral 
blood flow at a given frequency caused by task-triggered 
cortical activity and are used as a feature of cortical 
activation.

Wavelet phase coherence (WPCO) is used to calculate 
functional connectivity, which describes the statistical 
interdependence between two hemoglobin oscillatory 
components by examining how the phase difference 
between two signals aligns over a specific frequency 
range [29]. With the CWT, two time series, x1 (tn) and 
x2 (tn), in the instantaneous phase under a specific fre-
quency f can be obtained for ∅1 (f, tn) and ∅2 (f, tn)
, respectively. Thus, the instantaneous phase difference 
between the two relative oxygenated hemoglobin con-
centration signals can be expressed as follows:

	 ∆ ∅ (f, tn) = ∅1 (f, tn) − ∅2 (f, tn)

Then, based on cos∆ ∅ (f, tn) and sin∆ ∅ (f, tn) in the 
time domain average, ⟨cos∆ ∅ (f)⟩ and ⟨sin∆ ∅ (f)⟩ can 
be obtained, resulting in the WPCO defined as follows:

	 WPCO (f) =
√

⟨cos∆ ϕ (f)⟩2 + ⟨sin∆ ϕ (f)⟩2

The WPCO lies between 0 and 1 and quantifies the 
degree of agreement between the instantaneous phases 
of two signals over the continuum of a time series to 
determine possible connectivity. Higher WPCO values 
indicate coherence between the two cortical regions, and 
lower values indicate a weaker relationship between the 
two cortical signals. More detailed fNIRS features are 
shown in Table S1.

Selected features
We obtained 38 clinical characteristics from the clini-
cal data. Focusing on fNIRS measurements in the rest-
ing state and the first motor training state, we calculated 
315 fNIRS features, including activation of brain areas 

(n = 28), functional brain connectivity (n = 182), and 
fNIRS difference features derived from subtracting the 
resting state from the task state (n = 105). The details are 
presented in Table S1. To obtain robust features, we per-
formed 100 random divisions of the dataset at a 3:1 ratio, 
with 75% of the data classified as the training set and 25% 
as the test set. In the training sets, samples were balanced 
for the classification task using the synthetic minority 
oversampling technique (SMOTE) [30]. Finally, features 
were normalized using z scores to mitigate the dominant 
effect of features at larger numerical scales [31].

To address the challenge of irrelevant or redundant 
predictors within the model training process, LASSO 
was applied. LASSO is a regression technique that 
improves model accuracy by adding a penalty to the 
regression coefficients. This penalty, controlled by a tun-
ing parameter λ, shrinks some coefficients to zero, effec-
tively performing feature selection and reducing model 
complexity [32, 33]. We repeatedly conducted feature 
selection across 100 different training sets, utilizing ten-
fold cross-validation to select the tuning parameters each 
time. The final results were statistically analyzed, and fea-
tures with the highest selection frequency were consid-
ered robust. This method provided a way to assess feature 
stability, ensuring that key features were identified across 
varying data distributions.

Model construction and evaluation
The feature sets were designated the clinical feature set, 
fNIRS feature set, and combined feature set, which incor-
porated both clinical and fNIRS features. Robust features 
and target variables were selected from these feature sets 
to construct the model at an empirical ratio of 10:1 for 
the number of datasets: features, which helps to reduce 
the risk of model overfitting. The dataset was randomly 
resegmented 100 times, and in each segmented train-
ing set, six machine learning algorithms were used to 
construct the predictive model: support vector machine 
(SVM), random forest (RF), logistic regression (LR), 
k-nearest neighbor (KNN), artificial neural network 
(ANN) and elastic network (EN). Tenfold cross-valida-
tion combined with a grid search was used to select the 
optimal hyperparameters for the different algorithms. 
The specific parameter settings are listed in Table S2. The 
experimental flowchart is shown in Fig. 2. All modeling 
was carried out using Python version 3.7.15.

For the binary classification model of responders and 
nonresponders, we calculated the area under the receiver 
operating characteristic curve (AUC) and accuracy to 
assess the predictive performance of the different mod-
els. For the FMA-UE scores, we calculated the Spear-
man correlation coefficient (r) and root mean square 
error (RMSE) between the predicted and true values to 
evaluate the model’s performance, and the results are 
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presented as the mean ± standard deviation. Finally, we 
employed Shapley Additive Explanations (SHAP) to elu-
cidate the prediction process of the best-performing 
model on the test set. The SHAP interpretation eluci-
dates the output of a machine learning model by employ-
ing the Shapley value principle from game theory. This 
method quantifies the influence of each feature on the 
model’s output, providing insight into how the model uti-
lizes these features to make predictions [34].

Statistical analysis
All the statistical analyses were performed using SPSS 
version 22.0 (IBM, Armonk, NY). The normality of the 
data was assessed using the Kolmogorov‒Smirnov test. 
Depending on the distribution (normal or nonnormal), 
continuous data are presented as either the mean ± SD 
or the median and interquartile range (IQR). Differences 
in continuous variables were compared using either the 
Mann‒Whitney U test or the independent samples t test. 
Fisher’s exact test was used to compare differences in cat-
egorical variables. Categorical variables are described by 
the number of participants (percentage), and two-tailed 
tests with a P value less than 0.05 were considered to 
indicate statistical significance.

Results
Of the 94 participants who underwent upper limb 
robotic rehabilitation treatment, 12 participants were 
excluded due to accidental discharge, lack of assessment, 
or incomplete medical records. Ultimately, a total of 82 

subacute stroke participants were included. Among the 
participants with FMA-UE scores less than 21, 29 were 
in the passive group, 17 were in the assisted group, and 
4 were in the resistance group. All participants showed 
improvements in FMA-UE scores after training. In the 
responder group (n = 20), the average FMA-UE score 
was 18.60 ± 17.13 before training and 36.90 ± 19.23 after 
training. In the nonresponder group (n = 62), the aver-
age FMA-UE score was 22.19 ± 17.79 before training and 
24.79 ± 17.64 after training. A summary of the demo-
graphic characteristics, stroke features, and clinical test 
results of the participants is presented in Table  1. Sig-
nificant differences (p < 0.05) were found in the time 
since onset and baseline MBI between responders and 
nonresponders. In the responder group, the average time 
of onset was 48.50 ± 63.00 days, and the MBI score was 
45.45 ± 22.58 points.

Modeling feature selection
Feature selection was performed for classification mod-
els predicting participants with clinically significant 
improvement and regression models predicting con-
tinuous FMA-UE values, as shown in Fig.  3. For the 
classification model, task-state FC features (such as IPFC-
CDLPFC, CM1-IOC, CPFC-OC, and CSFC-IOC) were 
most frequently selected, with frequencies exceeding 
90%. In contrast, the selection frequency of resting-state 
and difference features was less than 88%, indicating that 
task-state features are more robust. For more detailed 
results see Fig. S1. The time since stroke onset was the 

Fig. 2  Flowchart of data analysis. Ninety-four participants were included. Cortical activation and connectivity features were measured using fNIRS during 
resting and UE-RAT tasks at the participants’ first rehabilitation session, and baseline clinical characteristics were collected for model construction, with 
the predictor target being the FMA-UE score at discharge. After excluding 12 participants with missing FMA-UE scores, 82 participants met this criterion. 
The dataset of these patients was divided 100 times, and the training set after each division was subjected to feature selection, and the features with the 
highest screening frequency were used to build clinical, fNIRS, and combinatorial models. FMA-UE: Fugl-Meyer Assessment for Upper Extremity; MEP: 
Motor Evoked Potential; S1: Session 1
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Table 1  Baseline characteristics of participants
ALL
(n = 82)

Responder
(n = 20)

Non-responder
(n = 62)

P*

MEP Presence of the affected hemisphere 24 (29.3%) 8 (40.0%) 16 (25.8%) < 0.225
Average wave amplitude-unaffected hemisphere 0.58 (0.61) 0.57 (0.60) 0.59 (0.67) < 0.345
Average wave amplitude-affected hemisphere 0.00 (0.12) 0.00 (0.23) 0.00 (0.01) < 0.233
Average latency-unaffected hemisphere 22.14 (3.91) 22.47 (4.19) 21.54 (3.02) < 0.060
Average latency-affected hemisphere 0.00 (20.43) 0.00 (23.61) 0.00 (19.00) < 0.173

Comorbidities Heart disease 5 (6.1%) 2 (10.0%) 3 (4.8%) < 0.402
Diabetes 30 (36.6%) 4 (20.0%) 26 (41.9%) < 0.077
Hypertension 69 (84.1%) 18 (90.0%) 51 (82.3%) < 0.410
Hyperlipidemia 21 (25.6%) 7 (35.0%) 14 (22.6%) < 0.269
Hyperuricemia 7 (8.5%) 1 (5.0%) 6 (9.7%) < 0.515

Laboratory Data Albumin (nmol/L) 40.21 ± 3.30 40.19 ± 3.83 40.16 ± 3.14 < 0.791
Blood glucose (nmol/L) 5.28 (1.67) 5.69 (1.32) 5.13 (1.70) < 0.081
Uric acid (nmol/L) 350.49 ± 103.41 362.05 ± 85.19 346.75 ± 109.10 < 0.568
Cholesterol (nmol/L) 4.14 (1.09) 4.18 (1.09) 4.12 (1.11) < 0.845
Triglyceride (nmol/L) 1.47 (0.94) 1.99 (1.34) 1.41 (0.80) < 0.938
Fibrinogen (g/L) 3.54 (1.49) 3.71 (1.49) 3.49 (1.48) < 0.051
D-Dimer(ug/ml) 0.42 (0.43) 0.39 (0.30) 0.44(0.45) < 0.991
Hemoglobin(g/L) 4.49 (0.59) 4.42 (0.71) 4.52 (0.56) < 0.597
Leukocyte(g/L) 6.39 (2.22) 6.65 (2.57) 6.36 (2.02) < 0.746
Erythrocyte(g/L) 4.49 ± 0.59 4.48 ± 0.57 4.42 ± 0.71 < 0.826

Vital signs Temperature 36.50 (0.40) 36.50 (0.30) 36.50 (0.40) < 0.360
Heart (beats/min) 78.00 (13.00) 79.00 (12.00) 78.00 (12.00) < 0.107
Respiratory rate (beats/min) 20.00 (2.00) 19.00 (2.00) 20.00 (2.00) < 0.649
Systolic blood pressure (mmHg) 132.00 (22.00) 136.50 (22.80) 131.50 (23.30)
Diastolic blood pressure (mmHg) 84.35 (11.29) 84.60 (8.76) 84.27 (12.04) < 0.896

Demographic information Height (cm) 165.00 (17.00) 167.50 (17.80) 165.00 (16.3) < 0.388
Body weight (kg) 63.25 (13.55) 65.00 (13.80) 63.00 (14.30) < 0.638
Age 58.64 ± 13.09 59.55 ± 12.22 58.36 ± 13.45 < 0.713
Gender < 0.934
Male 58 (70.7%) 14 (70.0%) 44 (70.9%)
Female 24 (29.3%) 6 (30.0%) 18 (29.0%)

Stroke characteristics Time since onset (Days) 42.00 (51.25) 48.50 (63.00) 29.50 (31.30) < 0.004*
Side of lesion < 0.522
Left 42 (51.2%) 9 (45.0%) 33 (53.2%)
Right 40 (48.8%) 11 (55.0%) 29 (46.8%)
Stroke subtype < 0.957
Ischemic 57 (69.5%) 14 (70.0%) 43 (69.4%)
Hemorrhage 25 (30.5%) 6 (30.0%) 19 (30.6%)
Location < 0.942
Cortices 10 (12.2%) 2 (10.0%) 8 (12.9%)
Subcortical 60 (73.2%) 15 (75.0%) 45 (72.6%)
Combined 12 (14.6%) 3 (15.0%) 9 (14.5%)

Clinical assessment MMSE 25.00 (8.00) 25.00 (8.50) 25.50 (8.30) < 0.572
NIHSS 6.00 (4.00) 7.00 (4.00) 5.00 (5.00) < 0.604
FMA-UE 21.32 (17.13) 18.60 (14.99) 22.19 (17.79) < 0.446
MBI 56.34 ± 23.87 45.45 ± 22.58 59.86 ± 23.37 < 0.019*

Data conforming to a normal distribution is presented as mean ± standard deviation. Non-normally distributed data is presented as median (IQR). Categorical 
variables are represented as participant frequency (%). NIHSS National Institutes of Health Stroke Scale, MMSE Mini-Mental State Examination, FMA-UE Upper 
Extremity subscale of the Fugl-Meyer Assessment, MBI Modified Barthel Index
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most significant clinical feature, with a selection fre-
quency of 100%; the baseline MBI score and diabetes 
status were also found to be highly reliable predictive 
factors. In the regression model, key fNIRS predictors 
included resting-state FC for CSFC-IOC and task-state 
FC between the CDLPFC-COC and IPFC-IPMC.

These robust features were used to construct the 
models. For classification, both the fNIRS model and 
the clinical model utilized the 9 features with the high-
est selection frequencies. The combined model included 
IPFC-CDLPFC-T, CM1-IOC-T, CPFC-OC-T, CSFC-OC-
T, COC-T, CSFC-PMC-T, time since stroke onset, MBI 
score, and diabetes status. In the regression model, the 
combined model used CDLPFC-COC-T, IPFC-IPMC-T, 
CSFC-IOC-R, baseline FMA-UE score, time poststroke, 
and baseline NIHSS score.

Model outcomes
In the classification models, we initially constructed task-
state, resting-state, and difference models based on the 
fNIRS feature selection results from these three states, as 
shown in Table  2. We found that the model built solely 
using task-state data consistently outperformed those 
based on resting-state or difference features in prediction 
accuracy, highlighting the critical role of task-state mea-
surements in evaluating stroke recovery potential. How-
ever, we observed that the robustness of certain features 
was not ideal. For instance, key features such as CS1-
IOC-T and IDLPFC-IS1-T were selected less than 80% 
of the time, suggesting greater variability in their perfor-
mance across data partitions. Therefore, we selected the 
highest frequency features from task-state, resting-state, 
and difference features to enhance the robustness of the 
model.

The fNIRS, clinical, and combined models for clas-
sification and regression predictions were constructed 

Fig. 3  Feature selection results. (A) An example of feature selection using the LASSO model, illustrating the tuning of the parameter λ. The red dot repre-
sents the average mean squared error (MSE) computed from a 10-fold cross-validation. Gray vertical lines indicate the standard deviation of the MSE, while 
the dashed vertical line marks the optimal value of λ corresponding to the minimum average MSE, a critical point for feature selection. (B) Coefficient 
paths for feature selection via LASSO, with each colored line representing the coefficient trajectory of an individual feature as a function of λ. Features with 
nonzero coefficients, determined by the optimal λ marked by the vertical dashed line, show a trend toward zero beyond this point, indicating stabilization 
in feature selection. (C) Frequency of feature selection targeting MCID classification by FMA-UE. (D) Frequency of feature selection targeting continuous 
values of FMA-UE
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using robust features selected by LASSO. The results 
of the constructed models are shown in Table  3; Fig.  4. 
Among these algorithms, the fNIRS models based on 
ANN and SVM exhibited superior performance, achiev-
ing moderate predictive capabilities: the ANN model had 
an AUC of 0.773 (0.111), and the SVM model had a cor-
relation coefficient (r) of 0.461 (0.153), confirming the 
effectiveness of fNIRS features in rehabilitation predic-
tion (Table 4; Fig. 5). Furthermore, integrating fNIRS fea-
tures with clinical characteristics significantly enhanced 
the performance of both the ANN and SVM models: the 
AUC for the ANN model increased to 0.861 (0.087), and 
the correlation coefficient for the SVM model increased 
to 0.862 (0.069). These results underscore the impor-
tance of combining fNIRS and clinical features, which 

significantly boosts the accuracy of rehabilitation pre-
dictions. For the combined model, we also compare the 
modeling results of the original data and the balanced 
processing of the SMOTE data, as detailed in Table S3. 
The comparison reveals that the SMOTE sample balanc-
ing treatment improves the model prediction results in 
most cases, especially in the sensitivity, which achieves 
a significant improvement, and the key metrics, such 
as accuracy and AUC, are also improved. This indicates 
that after applying sample balancing to the original data, 
the model’s ability to identify the minority class has sig-
nificantly improved, which contributes to enhancing the 
model’s predictive performance.

Table 2  Classification outcomes of MCID patients were predicted using machine learning models constructed from resting-state, 
task-state, and the difference between the two fNIRS datasets
Model Resting-state fNIRS Data Set Task-state fNIRS Data Set

AUC ACC Sen Spc AUC ACC Sen Spc
SVM 0.715 (0.129) 0.664 (0.099) 0.628 (0.210) 0.675 (0.121) 0.853 (0.094) 0.760 (0.100) 0.794 (0.193) 0.750 (0.119)
RF 0.674 (0.134) 0.705 (0.097) 0.456 (0.227) 0.783 (0.124) 0.668 (0.130) 0.715 (0.100) 0.414 (0.224) 0.810 (0.129)
ANN 0.663 (0.114) 0.711 (0.092) 0.516 (0.236) 0.772 (0.124) 0.818 (0.097) 0.774(0.075) 0.624 (0.222) 0.821 (0.087)
LR 0.703 (0.149) 0.688 (0.117) 0.608 (0.246) 0.686 (0.141) 0.812 (0.113) 0.720 (0.107) 0.696 (0.211) 0.727 (0.129)
KNN 0.692 (0.137) 0.607 (0.107) 0.682 (0.211) 0.583 (0.145) 0.681 (0.139) 0.616 (0.117) 0.654 (0.208) 0.605 (0.149)
EN 0.670 (0.135) 0.652 (0.101) 0.584 (0.219) 0.673 (0.125) 0.830 (0.104) 0.754 (0.109) 0.722 (0.198) 0.764 (0.123)
Model Resting state-task state difference fNIRS Data Set

AUC ACC Sen Spc
SVM 0.684 (0.137) 0.667 (0.094) 0.586 (0.209) 0.693 (0.118)
RF 0.557 (0.144) 0.669 (0.096) 0.296 (0.221) 0.786 (0.113)
ANN 0.621 (0.128) 0.659 (0.103) 0.448 (0.224) 0.725 (0.136)
LR 0.672 (0.131) 0.667 (0.087) 0.570 (0.224) 0.680 (0.106)
KNN 0.569 (0.145) 0.506 (0.112) 0.598 (0.213) 0.477 (0.142)
EN 0.621 (0.138) 0.629 (0.088) 0.506 (0.231) 0.667 (0.121)
SVM: Support Vector Machine, RF: Random Forest, ANN: Artificial Neural Network, LR: Logistic Regression, KNN: K-Nearest Neighbors, EN: Elastic Net, AUC: Area Under 
the Curve, ACC: Accuracy, Sen: Sensitivity, Spc: Specificity, fNIRS: functional near-infrared spectroscopy

Table 3  Classification results of predicting postintervention MCID participants using six machine learning methods with three types 
of datasets
Model Clinical Data Set fNIRS Data Set

AUC ACC Sen Spc AUC ACC Sen Spc
SVM 0.802 (0.095) 0.735 (0.085) 0.634 (0.247) 0.766 (0.109) 0.828 (0.086) 0.765 (0.089) 0.716 (0.195) 0.781 (0.102)
RF 0.752 (0.122) 0.745 (0.088) 0.431 (0.221) 0.843 (0.098) 0.661 (0.120) 0.709 (0.094) 0.376 (0.213) 0.813 (0.106)
ANN 0.803 (0.120) 0.757 (0.079) 0.502 (0.216) 0.836 (0.094) 0.773 (0.111) 0.735 (0.082) 0.521 (0.197) 0.803 (0.101)
LR 0.787 (0.102) 0.729 (0.098) 0.642 (0.233) 0.756 (0.122) 0.778 (0.093) 0.722 (0.092) 0.634 (0.182) 0.751 (0.118)
KNN 0.728 (0.104) 0.633 (0.111) 0.752 (0.215) 0.596 (0.133) 0.716 (0.112) 0.634 (0.105) 0.754 (0.175) 0.596 (0.129)
EN 0.763 (0.104) 0.687 (0.096) 0.654 (0.231) 0.698 (0.114) 0.762 (0.105) 0.713 (0.085) 0.711 (0.151) 0.715 (0.109)
Model Clinical-fNIRS Data Set

AUC ACC Sen Spc
SVM 0.849 (0.078) 0.805 (0.069) 0.764 (0.221) 0.818 (0.088)
RF 0.696 (0.114) 0.704 (0.102) 0.454 (0.221) 0.782 (0.119)
ANN 0.861 (0.087) 0.805 (0.082) 0.786 (0.218) 0.812 (0.098)
LR 0.823 (0.088) 0.783 (0.078) 0.692 (0.200) 0.813 (0.095)
KNN 0.717 (0.115) 0.615 (0.097) 0.794 (0.187) 0.564 (0.126)
EN 0.799 (0.101) 0.729 (0.089) 0.722 (0.019) 0.732 (0.109)
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Predictive factor analysis
We recorded the Shapley values of the features in each 
prediction model and then calculated the mean to obtain 

the average feature importance, as illustrated in Fig.  6A 
and B. IPFC-CDLPFC-T, CM1-IOC-T, CPFC-COC-
T, and CSFC-IOC-T were the features with the great-
est decision contributions in the classification model. 
Figure  6C shows that participants with higher baseline 
values of IPFC-CDLPFC-T and CM1-IOC-T are more 
likely to achieve significant functional improvement 
from training, whereas lower values of CPFC-COC-T 
and CSFC-IOC-T suggest limited recovery. The FMA-UE 
and NIHSS scores at baseline, as well as CDLPF-COC-T, 
contributed the most to the regression model. Plus and 
minus signs indicate the direction of a feature’s influence, 
with a positive value indicating an increase in model out-
put and a negative value indicating a decrease.

SHAP analysis also allows visualization of the predic-
tion process for individual participants to understand 
how these features play a role in prediction. Examples of 
individual predictions from the classification and regres-
sion models are shown in Fig.  6E and F. The horizontal 

Table 4  Correlation coefficient (r) and root mean square error 
(RMSE) of model predictions for postintervention FMA-UE score

Model Clinical Data Set fNIRS Data Set Clinical-fNIRS 
Data Set

r SVM 0.848 (0.081) 0.461 (0.153) 0.862 (0.069)
RF 0.837 (0.079) 0.389 (0.148) 0.824 (0.079)
ANN 0.818 (0.067) 0.529 (0.143) 0.838 (0.080)
LR 0.832 (0.087) 0.493 (0.144) 0.843 (0.081)
KNN 0.743 (0.106) 0.459 (0.165) 0.744 (0.104)
EN 0.836 (0.083) 0.492 (0.147) 0.847 (0.059)

RMSE SVM 3.03 (0.51) 4.08 (0.27) 2.99 (0.54)
RF 3.28 (0.36) 4.11 (0.22) 3.31 (0.36)
ANN 3.25 (0.35) 3.97 (0.25) 3.14 (0.35)
LR 3.10 (0.39) 3.96 (0.27) 3.12 (0.48)
KNN 3.53 (0.35) 4.06 (0.28) 3.49 (0.31)
EN 3.09 (0.38) 3.97 (0.24) 3.04 (0.41)

Fig. 5  Regression analysis results for root mean square error (RMSE) predicting postintervention FMA-UE score. Violin plots display the median, first and 
third quartiles, and minimum and maximum values of the RMSE distributions calculated by six machine learning methods. (A) fNIRS feature dataset, (B) 
clinical dataset, (C) fNIRS + clinical dataset

 

Fig. 4  AUC results of classification analysis (∆FMA-UE < 9 vs. ≥ 9). Violin plots display the median, first and third quartiles, and minimum and maximum 
values of the AUC distributions calculated by six machine learning methods. (A) fNIRS feature dataset, (B) clinical dataset, (C) fNIRS + clinical dataset
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axis represents the Shapley values, with 0.517 and 26.91 
denoting the “base values” of the contributions of the 
classification and regression models, respectively. These 
values represent the mean or expected output (predicted 
value) of the models in the absence of any feature influ-
ence. Figure 6E shows that the overall contribution of the 
Shapley values for this patient’s features (0.572) is greater 

than the expected value (0.517), classifying it as posi-
tive, with CSFC-CPMC-T and CSFC-IOC-T being the 
main contributing features. Figure 6F shows that a higher 
baseline FMA-UE score positively affects the predictions, 
whereas a longer time since stroke diminishes the mod-
el’s predictive output.

Fig. 6  Interpretability analysis of model predictions. (A) Average contribution of input features to the predictions of the best classification model (ANN). 
(B) Average contribution of input features to the predictions of the best regression model (SVM). (C) Swarm plot showing the average Shapley values 
and feature distributions for the classification model identifying responders (∆FMA-UE ≥ 9), with the color of the points indicating the positive or negative 
contribution of the feature values to the prediction. (D) Average Shapley values and feature distributions for the regression model predicting patient 
FMA-UE scores. Example of model output for a single patient, showing how the Shapley value calculated from the patient’s eigenvalues determines the 
categorical prediction result (E) for responders and the regression prediction result (F) for the FMA-UE value (true value of 26). E[f(X)] denotes the base 
value of the model, f(X) denotes the output value of the model
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Discussion
This study used fNIRS to assess cortical activation and 
FC changes in subacute stroke patients in the resting 
state and during UE-RAT. These fNIRS features, com-
bined with demographic and clinical data, were used to 
develop models through machine learning methods to 
predict upper limb motor function recovery after two 
weeks of intensive training. The main findings of the 
study are as follows: (1) Compared to resting-state mea-
surements, the FC induced by UE-RAT demonstrates 
superior performance in predicting short-term upper 
limb motor function recovery. (2) combining task-related 
FC with clinical features further enhances the accuracy 
of the predictive models. Additionally, through model 
interpretation analysis, this study revealed that initial 
functional brain responses during UE-RAT were asso-
ciated with short-term recovery of upper limb motor 
function. For example, patients with greater connectivity 
between regions such as the IPFC-CDLPFC, CMC-IOC, 
and CSFC-CPMC have greater short-term rehabilitation 
potential. This information is crucial for enhancing the 
accuracy of rehabilitation predictions.

Previous research relying on traditional statistical mod-
els achieved AUCs of 0.72 and 0.58 for predicting patients 
with clinically significant improvement (ΔFMA-UE ≥ 9) 
based on hand motor scales and time since onset, respec-
tively [25]. Additionally, time since onset was not a good 
predictor of the FMA-UE score at discharge, with a per-
centage of variance explained (R2) < 35% [35]. In another 
study [36], kinematic data measured by robots were used 
to predict FMA-UE scores, with correlation coefficients 
ranging from 0.65 to 0.82. We used combined mod-
els constructed with ANNs and SVMs that obtained an 
AUC of 0.861 (0.087) and a correlation of 0.862 (0.069), 
respectively. Compared to previous studies, we achieved 
better accuracy, which may be attributed to the model-
ing methods and feature parameters used. Rehabilitation 
is influenced by multiple factors, and these influences are 
not simply linear changes but rather a complex nonlin-
ear process. Machine learning effectively handles and 
analyzes complex multidimensional data, particularly in 
situations with large datasets and high feature dimen-
sions, as it can automatically capture hidden patterns 
and nonlinear relationships within the data. This advan-
tage allows machine learning methods to perform better 
outcomes for rehabilitation prediction [37, 38], and our 
study supports this finding. However, it is essential to 
emphasize that although machine learning outperforms 
traditional methods in many tasks, it does not imply it 
is the best choice in all cases. For instance, in the clas-
sification of responders versus non-responders shown in 
Table 4, the predictive performance of LR outperforms 
the RF, KNN, and EN models, indicating that traditional 
statistical models may have advantages in dealing with 

linear pattern data and smaller sample sizes [39]. Thus, 
when selecting models, it is crucial to consider the spe-
cific characteristics of the task and the distribution of the 
data to ensure the most appropriate model and method 
are chosen.

Compared to bedside assessments and demographic 
clinical information, evaluating neuron activity or func-
tional abnormalities induced by stroke may more directly 
reflect the patient’s neurological status. Using discrimi-
nant function analysis, Hu [40] found that compared to 
clinical variables, resting-state FC based on fMRI had 
greater discriminative power in predicting the progno-
sis of patients with Moyamoya disease (MMD). Chen 
[41] identified biomarkers for upper limb rehabilitation 
from clinical variables and EEG data and determined 
that brain network connectivity features were the best 
predictors. Bian [42] and Mohanty [43] used machine 
learning to construct classification models based on 
standardized tests, and their results emphasized the 
importance of resting-state brain functional connec-
tivity in predicting rehabilitation outcomes, providing 
more accurate predictions. However, motor recovery is 
a complex process influenced not only by spontaneous 
recovery but also by intervention-induced neuroplastic 
changes. Resting-state measurements cannot directly 
provide neuroimaging information about how the brain 
responds to treatment. Several fMRI studies have sug-
gested that task-related brain functional network reorga-
nization provides valuable insights and that identifying 
intervention-specific biomarkers may more effectively 
predict upper limb motor recovery [12, 44, 45]. Cole [46] 
used FC-based machine learning models to predict task 
activation, and the results showed that task-related FC 
changes significantly improved the accuracy of predict-
ing cognitive task activation. Another study used FC data 
from both resting-state and multiple task conditions to 
predict fluid intelligence scores, and the results indicated 
that task-based models enhanced the prediction of indi-
vidual characteristics [47]. Sutoko [48] used brain acti-
vation and connectivity features measured by fNIRS to 
classify children with attention deficit/hyperactivity dis-
order (ADHD). The results showed that task-based clas-
sification outperformed baseline measurements (AUC: 
0.799–0.862 vs. 0.845–0.853). Additionally, connectiv-
ity features performed better than activation-based bio-
markers. This result is consistent with our findings, where 
FC measured during tasks is highly important and plays 
a crucial role in enhancing the accuracy of rehabilitation 
predictions. Overall, FC provides valuable predictors at 
the level of brain function by assessing neuronal activity 
and functional brain networks. Task state measurements 
capture the complex changes in the brain during task 
performance, and these patterns of change are closer to 
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the actual functional needs of the patient, improving the 
accuracy of rehabilitation predictions.

In recent years, treatments involving UE-RAT that 
incorporate visual or auditory stimuli or VR technology 
have shown better clinical outcomes in improving upper 
limb function [49, 50]. This finding may be because motor 
tasks accompanied by multimodal stimuli during training 
induce more robust cortical responses and strengthen 
connections within brain interaction networks [16, 51]. 
Jiang’s study [52] confirmed that the fNIRS responses 
induced by UE-RAT demonstrate good temporal and 
spatial reliability (R2 > 0.6), making them effective bio-
markers for characterizing UE-RAT-induced neural 
responses. We observed a potential association between 
the extensive brain network connectivity induced by 
this training modality and, in particular, the initial level 
of functional connectivity of these brain networks and 
the recovery of upper limb function in stroke patients: 
higher connectivity of the IPFC-CDLPFC, CMC-IOC, 
and CSFC-CPMC during task states may indicate greater 
potential for functional improvement. The occipital cor-
tex plays a critical role in integrating multisensory infor-
mation, including spatial attention, decision-making, 
sensorimotor integration, and motor planning during 
visually guided movements [53]. On the other hand, the 
primary motor cortex is primarily responsible for execut-
ing motor commands and coordinating muscle activi-
ties [54]. The enhanced interaction between the CMC 
and IOC may reflect the brain’s effort to compensate for 
sensory loss by strengthening connections between the 
ipsilateral sensory cortex and contralateral motor con-
trol regions. Moreover, greater connectivity suggests that 
the brain reinforces processing of visual information and 
motor execution, showing that robot-assisted movement 
rehabilitation also involves other modalities, such as cog-
nitive or visual processing [55].

Previous research has shown that robot-assisted motor 
training can improve brain regions associated with motor 
learning and attention, such as the superior frontal cor-
tex (SFC) [24]. The SFC is important for cognitive func-
tions, including attentional control, decision-making, 
and motor planning [56]. The connectivity of the CSFC 
with the CPMC reflects the role of the contralateral brain 
region in compensating for impaired ipsilateral function 
after stroke [57]. We found that patients with greater 
connectivity between the CSFC and CPMC were more 
likely to benefit from training, possibly because UE-RAT, 
combined with visual and auditory stimuli, provides rich 
sensory inputs that enable more effective integration of 
cognitive and motor planning to guide and optimize 
motor execution [58]. A study validated the efficacy of 
this training paradigm in improving upper limb func-
tion and cognition in acute and subacute stroke patients 
[59]. The increased connectivity between brain networks 

suggested a modification in the pattern of brain region 
recruitment during multisensory stimulation. This modi-
fication enhances the interaction among sensory-motor, 
visuospatial, and cognitively associated motor and non-
motor areas, helping patients acquire more clinically rel-
evant motor skills [60, 61]. However, patients performing 
more complex motor tasks may require greater attention 
and sensorimotor processing to integrate visual, proprio-
ceptive, and tactile feedback information with motor out-
put [62]. The study by Ward [63] revealed that severely 
impaired poststroke patients exhibited an enhanced acti-
vation trend in the contralateral occipital lobe during 
task execution, which was significantly negatively cor-
related with early motor performance. Premature per-
formance on complex tasks may lead to overloading of 
the contralateral hemisphere, particularly an overactive 
state in the contralateral occipital lobe, which could have 
an unfavorable effect on the patient’s future functional 
recovery. Several studies have also reported increased 
activation in the occipital lobe of stroke patients, which 
is linked to various symptoms and consequences, includ-
ing visual field defects, cognitive function recovery, and 
visual impairments [64, 65].

The results of this study also highlight key clinical fea-
tures, such as time since stroke, as critical in predicting 
patient functional improvement. Sale [66] and Lee [25] 
et al., among others, have suggested that upper limb 
robotic-assisted therapy may result in greater func-
tional improvement in stroke patients with a shorter 
time to onset of stroke and that the potential for recov-
ery may diminish as time since stroke progresses [67]. 
At the same time, baseline clinical tests (e.g., FMA-UE, 
NIHSS, MBI) were important in at least one of the pre-
diction models, and for the regression task in particular, 
the baseline score was identified as the most important 
predictor, consistent with the findings of previous studies 
[3, 68]. This result suggests that the initial level of impair-
ment may need to be taken into account in the predic-
tion of stroke rehabilitation. We also found that diabetes 
was an important factor contributing to poor recovery in 
subacute stroke patients. A recent meta-analysis [69] has 
shown that diabetes is commonly associated with poorer 
functional outcomes after stroke. This association may 
be because diabetes hinders the formation of new blood 
vessels in the brain, thus failing to meet the brain’s need 
for proper blood flow and nutrient delivery [70]. Our 
study suggests using both regression and classification 
models together, as the predicted values generated by 
the regression model can serve as a valuable supplement 
to the classification results. For instance, even if certain 
patients are classified as nonresponders by the classifica-
tion model, the regression model can still indicate minor 
progress in their rehabilitation therapy, aiding in the for-
mulation of subsequent treatment plans or adjustments 
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to rehabilitation strategies. The combined use of these 
two models can offer a more comprehensive and nuanced 
assessment of therapeutic efficacy.

Study limitations
This study provides valuable insights into the use of 
fNIRS measures and machine learning methods to pre-
dict the response to upper limb robotic rehabilitation 
therapy in stroke patients. However, several limitations 
remain. First, the relatively limited number of subjects 
in the study may have restricted the statistical power of 
some analyses. To ensure the reliability and applicability 
of the model, expanding the sample size and conduct-
ing external validation are necessary steps for further 
research. Second, the study adopted a retrospective 
design, and although patients received similar treatment 
plans, additional conventional physiotherapy may have 
been administered during the rehabilitation process, 
potentially impacting the results. Another limitation 
is the lack of motor data related to the quality of upper 
limb robotic training completed by patients, which is 
important for interpreting patient participation and reha-
bilitation outcomes. Additionally, we only evaluated the 
neural responses during the patients’ first training ses-
sion. Dynamic monitoring at multiple time points could 
potentially reveal the recovery process and trends, pro-
viding a more accurate prognosis. Finally, we would like 
to point out that this study only included subacute stroke 
patients for short-term recovery predictions. The sponta-
neous recovery during the subacute phase may obscure 
more complex rehabilitation patterns, so our results 
may not be applicable to chronic stroke patients. Future 
research should consider predicting long-term recovery 
in subacute stroke patients and conduct related studies 
in chronic stroke patients to validate the effectiveness of 
UE-RAT task-related brain functional responses in reha-
bilitation predictions.

Conclusion
In this study, we used fNIRS to explore the potential 
associations between brain functional responses induced 
by UE-RAT and upper limb motor function recovery. By 
integrating machine learning algorithms, we constructed 
a model that significantly improved the prediction accu-
racy. Our findings emphasize that brain functional 
response features measured during task states, particu-
larly FC, are more valuable than resting-state measure-
ments in predicting short-term rehabilitation outcomes. 
These results suggest that measuring baseline brain 
responses induced by UE-RAT with fNIRS and employ-
ing machine learning for recovery prediction could be 
effective methods for assessing patients’ rehabilitation 
potential. Although these initial results are encouraging, 

further comprehensive and extensive research is needed 
to validate and expand these findings.
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