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Abstract
Background  Clinical gait analysis plays a pivotal role in diagnosing and treating walking impairments. Inertial 
measurement units (IMUs) offer a low-cost, portable, and practical alternative to traditional gait analysis equipment, 
making these techniques more accessible beyond specialized clinics. Previous work and algorithms developed 
for specific clinical populations, like in individuals with Parkinson’s disease, often do not translate effectively to 
other groups, such as stroke survivors, who exhibit significant variability in their gait patterns. The Salarian gait 
segmentation algorithm (SGSA) has demonstrated the potential to detect gait events and subsequently estimate 
clinical measures of gait speed, stride time, and other temporal parameters using two leg-worn IMUs in individuals 
with Parkinson’s disease. However, the distinct gait impairments in stroke survivors, including hemiparesis, spasticity, 
and muscle weakness, can interfere with SGSA performance. Thus, the objective of this study was to develop and test 
an enhanced gait segmentation algorithm (EGSA) to capture temporal gait parameters in individuals with stroke.

Methods  Forty-one individuals with stroke were recruited from two acute rehabilitation settings and completed 
brief walking bouts with two leg-worn IMUs. We compared foot-off (FO), foot contact (FC), and temporal gait 
parameters computed from the SGSA and EGSA against ground truth measurements from an instrumented mat.

Results  The EGSA demonstrated greater accuracy than the SGSA when detecting gait events within one second, for 
both FO (96% vs. 90%) and FC (94% vs. 91%). The EGSA also demonstrated lower error than the SGSA when detecting 
paretic FC, and FO events in slow, asymmetrical, and non-paretic footfalls. Temporal gait parameters from the EGSA 
had high reliability (ICC > 0.90) for stride time, step time, stance time, and double support time across gait speeds and 
levels of asymmetry.

Conclusion  This approach has the potential to enhance the accuracy and validity of IMU-based gait analysis in 
individuals with stroke, thereby enhancing clinicians’ ability to monitor and intervene for gait impairments in a 
rehabilitation setting and beyond.
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Introduction
Inertial measurement units (IMUs) can obtain high-
resolution gait parameters in diverse environments with 
minimal obtrusiveness. With judicious signal processing 
algorithms, these wearable sensors offer precision com-
parable to that of cumbersome and expensive motion 
analysis equipment [1, 2]. These sensors can be leveraged 
in clinical gait analysis and rehabilitation medicine to 
detect abnormal gait patterns and biomarkers of impair-
ment [3, 4]. Integrating these devices into therapy plan-
ning would enable clinicians to monitor changes in gait 
impairment, supplementing traditional functional out-
comes of gait speed, endurance, and balance [5–7].

Effective, reliable algorithms are needed to extract 
meaningful gait measures from raw IMU signals. 
Although numerous studies have demonstrated the valid-
ity and reliability of IMU-based gait parameters within 
various populations and clinical settings (i.e., by detect-
ing and segmenting key parts of the gait cycle) [8–10], 
these measures have remained largely untested across 
individuals with different gait impairments. Examining 
an algorithm’s validity in different subgroups of patients 
is critical to define and understand its potential use 
cases. If an algorithm performs insufficiently, it may not 
be practical for clinical use. Further development of the 
population-specific or even person-specific algorithms 
may be warranted [11]. This approach can maximize the 
validity of gait parameters for effective implementation, 
and it can guide clinicians and researchers to interpret 
measures generated by different algorithms [12, 13].

Stroke is one such condition that may challenge the 
performance and usability of IMU systems for clinical 
gait analysis. Distinct motor impairments after stroke 
(including hemiparesis, spasticity, muscle weakness, 
limited balance and coordination) result in asymmetric, 
slow, and irregular gait patterns, as well as limited knee 
flexion and ankle dorsiflexion [14, 15]. We previously 
examined IMU-derived gait parameters from a commer-
cial IMU system in a chronic stroke population, finding 
greater error during slower walking and more asymmet-
ric gait [16]. Such errors would limit the usability of an 
IMU system in Inpatient Rehabilitation Facilities (IRFs), 
where patients experience more extensive and fluctuating 
gait impairments compared to chronic populations [17]. 
Notably, there have been a limited number of algorithms 
developed or validated specifically in stroke populations 
[4]. In one example, Yang et al. (2013) applied IMUs on 
the lower legs in 13 individuals with post-stroke hemi-
paretic gait [18]. They utilized acceleration and angular 
velocity signals to compute walking speed and to seg-
ment different parts of the gait cycle, respectively. While 
their approach generally performed well when estimat-
ing walking speed, there was no comparative ground 
truth measurement to validate the gait segmentation 

performance, and the authors acknowledged that their 
algorithm failed for subjects with abnormal shank angu-
lar velocities. Thus, more robust methods are needed to 
address the range of gait patterns seen in broader stroke 
populations. Specialized gait segmentation algorithms 
may be necessary to adapt to and accurately interpret 
these varied stroke-related gait abnormalities [19].

One such gait segmentation algorithm, presented by 
Salarian and colleagues, was designed to detect mid-
swing, foot-off (FO), and foot contact (FC) gait events 
based on characteristic angular velocity patterns during 
walking, as measured by two IMUs on the lower legs [20]. 
Originally designed using IMU data from people with 
Parkinson’s disease, which typically manifests in gait as a 
global impairment, marked by bradykinesia and shuffling 
[21], this algorithm has been applied to various healthy 
and clinical populations for gait monitoring [22], deriv-
ing spatial gait parameters [23], and computing features 
for predictive models [24]. However, the sole reliance of 
Salarian’s gait segmentation algorithm (SGSA) on angu-
lar velocity could lead to misdetections or failures when 
applied to populations with different gait abnormalities, 
such as stroke survivors.

Unlike Parkinson’s disease, stroke-related gait impair-
ments often include hemiparesis, spasticity, and muscle 
weakness, leading to asymmetric, slow, and irregular gait 
patterns [25]. Specifically, hemiparesis leads to uneven 
weight distribution and altered swing phases between the 
paretic and non-paretic legs [26, 27], causing irregular 
patterns that gyroscopes may not consistently detect [28]. 
Spasticity and muscle weakness contribute to unpre-
dictable and hesitant movements, resulting in irregular 
angular velocity signals that can obscure the precise iden-
tification of gait events [29]. Additionally, slower walking 
speeds amplify the variability in limb movements, making 
it more challenging for gyroscope-based algorithms to 
maintain accuracy in event detection. These complexities 
can hinder an algorithm’s ability to reliably segment the 
gait cycle by making it difficult to differentiate between 
genuine gait events and other motions introduced by 
post-stroke impairments. To address these challenges, 
we developed and tested an enhanced gait segmentation 
algorithm (EGSA), an adaptation of the SGSA specifically 
for individuals with subacute stroke.

The objectives of this study were twofold: (i) to bench-
mark the gait events and temporal gait parameters 
derived from the SGSA and the EGSA against a com-
monly used reference system, the GAITRite instru-
mented mat, and (ii) to compare the performance of the 
EGSA against the SGSA across different levels of speed 
and symmetry in subacute stroke. We hypothesized that 
the EGSA would be more sensitive than the SGSA when 
identifying gait events for individuals with stroke exhibit-
ing slow and asymmetric gait.
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Methods
Gait segmentation algorithms
Both the SGSA and EGSA leverage a continuous angu-
lar velocity signal from the lower leg IMUs (gyroscope 
horizontal axis; ω h , aligned with the mediolateral axis 
of the leg) [20], chosen for its applicability across healthy 
and pathological gait [22, 30]. In this context, positive 
values of ω h  indicate lower leg extension, while nega-
tive values signify lower leg flexion. Both algorithms 
segment key phases of the gait cycle by detecting mid-
swing, foot-off (FO), and foot contact (FC) (Fig. 1). The 
SGSA utilizes a threshold-based approach to detect the 
mid-swing event by detecting positive peaks of ω h  and 
labeling the local minima before and after these peaks as 
FO and FC, respectively (Fig. 1). The EGSA retains simi-
lar methods for identifying mid-swing but enhances FO 
detection by integrating the norm of the angular velocity 
signals to capture the residual propulsive movement of 
the lower leg. For FC detection, the EGSA supplements 
the FC events from SGSA with those derived from the 
acceleration signal from the lower leg IMUs (accelerom-
eter norm), to capture the leg’s deceleration for precise 
foot placement. Additionally, it uses dynamic time warp-
ing (DTW) to identify which FC events produce a seg-
mentation with minimum distance from a template for 
normal gait patterns. Additional details about the SGSA 
and EGSA are provided in the Supplementary Materials.

Participants
Forty-one participants with stroke were recruited from 
inpatient care units at the Shirley Ryan AbilityLab (Chi-
cago, IL), and Ascension Alexian Brothers (Elk Grove 
Village, IL). Inclusion criteria were: age 18 or older; 
individuals diagnosed with stroke admitted to either 
hospital; able and willing to give written consent and 
comply with study procedure. Exclusion criteria were: 

diagnosis of neurodegenerative pathologies; individu-
als who are pregnant or nursing; individuals with skin 
allergies, irritation, or open wounds; and individuals 
with a powered, implanted cardiac device. Demograph-
ics and clinical characteristics of these participants are 
provided in Table 1. Additionally, 51 healthy individuals 
(17 F/22 M, age 62.3± 14.3) with no known neurological 
or musculoskeletal conditions were recruited as compar-
ative controls, and their data was used for DTW template 
in the EGSA. The study was approved by the Institutional 
Review Board of Northwestern University (Chicago, IL; 
STU00205532) under federal regulations, university poli-
cies, and ethical standards regarding research on human 
subjects.

Experimental protocol
Participants with stroke completed up to seven study vis-
its: within one week of IRF admission, within one week 
prior to discharge, and 1-, 3-, 6-, 9-, and 12-months post-
stroke, with each session lasting up to 2 h. At each visit, 
participants were asked to complete a series of standard-
ized clinical assessments, including the 10-Meter Walk 
Test (10MWT), the Timed-Up-and-Go Test, the Berg 

Table 1  Participant demographics. Mean and standard deviation 
(SD) are presented. Two participants were not included in the 
table, as they were withdrawn due to medical complications 
after consenting

n = 39
Age (years) 62.3 ± 14.3
Sex (Male/Female) 22/17
Height 172.0 ± 10 cm
Weight 91.1 ± 27.0 kg
Days since stroke 17.0 ± 11.9 days
Stroke type (Ischemic/Hemorrhagic) 30/9
Paretic side (Left/Right) 16/23

Fig. 1  The three main steps of both the SGSA and EGSA to detect the (a) mid-swing, (b) foot-off, and (c) foot contact events. The solid horizontal line 
demarks the 0 for all the signals

 



Page 4 of 13Lanotte et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:219 

Balance Scale, the Functional Gait Assessment, and the 
6-Minute Walk Test. All assessments were adminis-
tered by licensed physical therapists. If assessments were 
deemed unsafe or inappropriate by the physical therapist, 
they were skipped during that visit. Gait assessments 
were performed with currently prescribed assistive 
devices and orthotics, and therapist assistance was pro-
vided as necessary to maintain safety.

Data from the 10MWT collected before October 1, 
2023 were utilized in this analysis. Similar to our previous 
IMU-based validation study [16], participants completed 
up to six trials of the 10MWT at two different speeds: 
comfortable velocity (CV), followed by fast velocity (FV).

Experimental setup
Equipment for this study comprised: (1) IMUs, either 
from Bionic Pro (Motesque, Germany) or SageMotion 
(SageMotion, USA), and (2) an instrumented mat – GAI-
TRite (GAITRite Inc, USA). SageMotion was imple-
mented in the study after Bionic Pro was commercially 
discontinued. Both types of IMU devices included triaxial 

accelerometers, gyroscopes, and magnetometers, with 
Bionic Pro sampling at a rate of 500  Hz and SageMo-
tion at 100 Hz. Two IMUs were placed concurrently on 
the body with Velcro straps, on the left and right lower 
and legs (Fig. 2a). To standardize the gait analysis across 
all sessions and devices, we applied a rotation matrix 
to the SageMotion data to match the orientation of the 
Bionic Pro device coordinates. We used a separate system 
(Xsens MVN, Movella Technologies, USA), connected to 
the GAITRite during data collection, as a unifying system 
to time-synchronize recordings between sensors and the 
GAITRite (Fig. 2a).

A total of 116 sessions were available for analysis (80 
with Bionic Pro, 36 with SageMotion). For each session, 
data from the IMU and GAITRite systems were visually 
inspected and discarded in case of the presence of sig-
nificant artifacts, poor synchronization, or missing data 
samples. A low-pass Butterworth filter (cut-off frequency 
15 Hz) was applied to the sensor data to attenuate high-
frequency noise. Both the SGSA and EGSA were imple-
mented in Matlab 2021a (Mathworks, Inc.; Natick, MA).

Fig. 2  Illustration of data preprocessing and the proposed algorithm. (a) Experimental setup for 10MWT. A system diagram for the experimental setup. 
Three PCs served as data recording systems for GAITRite, Xsens, and SM/BP. The laptop for SM/BP were connected to the device through WiFi. (b) Data pro-
cessing pipeline. (c) Detection of FO and FC events. Sensor locations. Orange: Xsens, Green: Sensors from SM/BP were placed in mediolateral directions. 
Two sensors were placed adjacent to each another. Only data from the lower legs were used for this study. Data from the faded sensors was not used
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Analysis 1: gait event detection
We examined the timing error (TE) of each FO and FC 
event, defined as the absolute difference in event time-
stamps between the IMU-based segmentation and the 
GAITRite (Eq.  1). To evaluate TE, we applied predeter-
mined time deviation thresholds (TDTs) ranging from 
0.01 to 1.0 seconds with 0.05-second increments [31], 
classifying the timing event T as a ‘verified event’ if its TE 
was less than or equal to the respective TDT (Eq. 2). For 
each threshold, we computed the cumulative percentage 
(CP), defined as the ratio of verified events to the total 
number of FO or FC gait events, N (Eq. 3).

	 TEij =
∣∣TijIMU − TijGAITRite

∣∣ � (1)

	
V Eij =

{
1 if TEij ≤ TDTi

0 otherwise
� (2)

	
CP j =

1

Nj

∑
Nj

i=1V Ei � (3)

Here, i represents a TDT, j represents targeted gait events 
(FO or FC), and VE represents verified events. At lower 
TDT values, the CP reflects events with minimal tim-
ing errors, while higher thresholds include events with 
greater timing discrepancies.

Next, we examined CPs across different subgroups of 
participants based on their walking speed, gait asymme-
try, and paresis, all of which can affect the gait kinemat-
ics and thus the IMU signal quality. For walking speed, 
participants were categorized into three subgroups based 
on footfall speed from the GAITRite: Slow, Medium, and 
Fast. We set the cutoff for these subgroups at clinically 
meaningful thresholds: 0.4  m/s for separating S and M, 
and 0.8  m/s for separating M and F, respectively, based 
on a commonly-used indicator of self-selected walking 
speed to distinguish household ambulators from com-
munity ambulators after stroke [32]. Similarly, for gait 
asymmetry, each step length was categorized into two 
subgroups using a step length symmetry index (SI), either 
Symmetric or Asymmetric:

	
SI =

|XC − XP|
0.5 · (XC + XP)

� (4)

where XC and XP are the step lengths of the current 
and the previous footfalls from the GAITRite, respec-
tively. Symmetric footfalls were then selected from indi-
vidual gait cycles with SI < 0.10, which is a typical range 
to accommodate step-to-step symmetry variability in 
healthy individuals [33–35]. Asymmetric footfalls were 
selected from gait cycles with SI ≥ 0.10, indicating under-
lying unilateral impairments or, in the case of healthy 

individuals, occasional gait adjustments or dominant side 
differences. Lastly, for paresis, individual footfalls were 
categorized into two subgroups based on whether they 
experienced an affected side after stroke: Paretic or Non-
Paretic. Our primary objective was to accurately compare 
the timing of specific gait events (FO and FC) detected by 
EGSA and SGSA. To achieve this, we employed TEs and 
CPs, which directly assess the precision and reliability of 
event timing relative to GAITRite’s ground truth.

To compare timing errors between the EGSA and the 
SGSA, we categorized gait events into three groups: 
those where both algorithms detected the event with the 
identical timing (matching events), those where neither 
algorithm detected the event, and those where either 
only one algorithm detected the event or their timing 
did not match (not-matching events). We computed the 
percentage and the number of events detected by either 
algorithm, relative to number of events detected by the 
GAITRite. To compare the timing errors between the 
EGSA and SGSA for both FO and FC events across all 
subgroups, we computed the median and interquar-
tile range (IQR) of the timing errors. Subsequently, we 
conducted one-tailed Mann-Whitney U test for each 
event type within each subgroup, resulting in 14 com-
parisons (2 event types in 7 subgroups). The signifi-
cance level was adjusted using Bonferroni correction to 
α = 0.05/14 = 0.0036 to account for multiple testing. All 
statistical analyses were conducted using Matlab 2021a 
(Mathworks, Inc.; Natick, MA).

Analysis 2: Temporal gait parameters
We computed six temporal gait parameters for each 
footfall using the IMU-derived gait events, including: 
(i) stride time (time between two consecutive FC events 
from the same leg), (ii) step time (time between two con-
secutive FC events from different legs), (iii) stance time 
(time between the FC and FO events from the same leg), 
(iv) swing time (time interval the FO and the consecutive 
FC from the same leg), (v) single support time (duration 
of the contralateral swing), and (vi) double support time 
(difference between stance time and single support time). 
These parameters were aggregated across all footfalls and 
trials for each participant and then compared against that 
participant’s ground truth parameters obtained from the 
GAITRite. The IMU-derived temporal gait parameters 
were evaluated in terms of (i) reliability (using the intra-
class correlation coefficient, ICC), (ii) agreement (via 
Bland-Altman plots), and accuracy (computed as median 
absolute percentage error) across (iii) walking speeds, 
(iv) asymmetry levels, and (v) paretic legs. This analysis 
is replicated from our previous work [16]. We opted not 
to include the SGSA in this comparative evaluation since 
we expected that gait events detected by the EGSA would 
frequently match with events detected by the SGSA in 
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Analysis 1, and that the EGSA would detect more events 
than the SGSA, resulting in a more comprehensive analy-
sis of the EGSA with fewer undetected steps.

Results
Details about the amount of data collected and analyzed 
are provided in the Supplementary Material (Supplemen-
tary Fig. 1).

Analysis 1: gait event detection
Generally, the EGSA had a CP value 6% and 3% greater 
than the SGSA for FO (Fig. 3a) and FC (Fig. 3b), respec-
tively, indicating that the EGSA correctly detected more 
gait events. At Slow walking speeds, the EGSA was more 

sensitive than SGSA in detecting both FO and FC events, 
with a respective 20% and 11% increase in detection rates. 
The two algorithms had similar CP values in Medium and 
Fast subgroups. For Asymmetric gait, the EGSA had CP 
values 10% and 6% greater than SGSA for the FO and FC, 
respectively, while performance in the Symmetric sub-
group was almost equivalent. For Paretic gait and Non-
Paretic gait, the EGSA slightly outperformed the SGSA 
in detecting the FO events for both Paretic gait (5% and 
3% greater than SGSA for the FO and FC, respectively; 
Fig.  3a), and Non-Paretic gait (6% and 2% greater than 
SGSA for the FO and FC, respectively; Fig. 3b).

A significant difference in the timing error was 
observed between the EGSA and the SGSA for FO events 

Fig. 3  Gait event detection compared between the enhanced gait segmentation algorithm (EGSA) and the Salarian gait segmentation Algorithm (SGSA). 
The cumulative percentage for detections of foot contact events (a) and foot-off events (b) evaluated by EGSA and SGSA. The left panels show a CP from 
overall data, and the right panels breakdown the CPs for subgroups. Abbreviations: S = Slow (≤ 0.4 m/s), M = Medium (0.4–0.8 m/s), F = Fast (> 0.8 m/s), 
Asym = Asymmetric, Sym = Symmetric, P = the paretic leg, Np = the non-paretic leg
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in both the Slow and Asymmetric subgroups (p’s < 0.001). 
No significant differences were found in the other sub-
groups. Most gait events were detected by both the EGSA 
and SGSA, suggesting a strong baseline performance in 
standard gait scenarios.

A detailed timing error analysis for gait event detection 
by the EGSA and SGSA is presented across subgroups in 
Table  2. For FC events, the EGSA demonstrated lower 
timing errors than the SGSA for the Paretic subgroup 
of footfalls (p < 0.01). For FO events, the EGSA demon-
strated lower timing errors than the SGSA for the Slow, 
Asymmetric, and Non-Paretic subgroups (p’s < 0.001). 
Similarly, for FO events, the EGSA demonstrated lower 
median and IQR compared to the SGSA in the Slow, 
Asymmetric, and Non-Paretic subgroups.

Analysis 2: temporal gait parameters
Numerical results are detailed in Table  3. Stride time, 
step time, stance time, and double support time estimates 
all achieved an excellent level of reliability (ICC > 0.90). 
Swing time and single support time estimates had poor 
reliability (ICC < 0.50). Only a small fraction of footfalls 
(ranging between 1.84 and 4.04%) fell outside the limits 
of agreement (LoA), ranging from 0.36 to 0.70  s for all 
estimates.

Stride time was estimated without any systematic or 
proportional bias in the error (Fig.  4a). Median abso-
lute percentage error (MdAPE, Fig.  4b) significantly 
decreased in both the medium (-0.97%, p < 0.001) and 
fast (-1.26%, p < 0.001) speed subgroups compared to the 
slow speed subgroup, and for symmetric compared to 
asymmetric footfalls (-0.52%, p < 0.001). MdAPE of the 
stride time estimate significantly differed between paretic 
(1.59%) and non-paretic leg (1.15%).

The step time estimate (Fig.  4c) was significantly pro-
portionally underestimated following an intercept of 
0.01s (p = 0.02) and slope of -0.01 (p = 0.01). MdAPE was 
significantly lower in the medium (-1.37%, p < 0.001) 
and fast (-2.72%, p < 0.001) speed subgroups compared 
to the slow subgroup, in the symmetric with respect to 
the asymmetric subgroups (-2.44%, p < 0.001), and in the 
paretic leg compared to the non-paretic one (-0.67%, 
p < 0.001) (Fig. 4d).

A significant constant bias of -0.07s (p < 0.001) was 
found for the stance time estimate (Fig. 4e). MdAPE was 
significantly lower in the slow speed subgroup compared 
to both the medium (-3.83%, p < 0.001) and fast (-3.30%, 
p < 0.001) speed subgroups. We also find a significant 
decrease in the MdAPE by 1.63% (p < 0.001) for asym-
metric footfalls compared to symmetric footfalls, and by 
0.34% (p < 0.001) for non-paretic footfalls compared to 
the paretic ones (Fig. 4f ).

Swing time was estimated with a significant pro-
portional bias (intercept 0.42s, slope − 0.78, p < 0.001, 

Fig.  4g). MdAPE was significantly different across sub-
groups, achieving optimal performance in the fast speed, 
symmetric, and paretic side subgroups (Fig. 4h).

Single support time, computed as the time of the con-
tralateral swing, achieved almost equal performance with 
the swing time estimate (Fig. 4i-j).

Double support time was significantly underestimated 
(Fig. 4k), following a proportional bias (intercept − 0.14s, 
slope − 0.02, p < 0.001). MdAPE was significantly lower in 
the slow speed and asymmetric subgroups, whereas no 
change was identified between sides (Fig. 4l).

Discussion
This study introduced and characterized the EGSA, a 
population-specific method for gait event detection, 
using two lower leg IMUs for individuals with stroke in 
IRFs. Unlike the original SGSA, which was designed and 
validated for Parkinson’s disease patients using solely 
gyroscopic data, the EGSA incorporates both accel-
erometer and gyroscope inputs to accommodate the 
asymmetrical and variable gait patterns of stroke survi-
vors. Hemiparesis often results in uneven stride lengths, 
altered stance and swing durations, and inconsistent 
shank movements, which can confound traditional seg-
mentation methods that rely on uniform gait cycles.

Overall, the EGSA improved detection of FO and FC 
compared to the SGSA. This enhancement was particu-
larly evident in the timely detection of FO for individuals 
with slower and asymmetric gait patterns. Temporal gait 
parameters from the EGSA achieved lower percentage 
absolute error at medium-to-fast gait speed, and in the 
symmetric subgroup. FO detection benefited the most 
from the EGSA, with the cumulative percentage of FO 
detection increasing up to 11% and 15% within the Slow 
and Asymmetric subgroups, respectively. This increase 
translated fewer timing errors, signifying more precisely 
timed detections (Table 2).

In contrast to previous studies employing fixed time 
thresholds for detection rate evaluation (such as 300 ms 
[36] or 500 ms [37]), our assessment method provided 
a comprehensive view of the EGSA’s performance in 
detecting gait events. This approach is particularly cru-
cial as it offers a more detailed understanding of algo-
rithm behavior across diverse clinical scenarios. The 
SGSA exhibited satisfactory performance in less impaired 
populations, but demonstrated limitations in addressing 
the complexities presented by individuals with slower 
and asymmetric gait patterns. In such cases, the EGSA 
achieved more accurate gait event detections.

Temporal gait parameters from the EGSA revealed var-
ied performance across different subgroups. We expect 
that the reduced reliability of swing and single support 
phase estimates is due to the larger impact of detection 
errors on these shorter metrics compared to stride, step, 
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and stance time estimates, leading to greater variability 
and potentially decreased ICC values. Results aligned 
with our previous finding [16], yet they used different 
sensor systems and algorithm for foot motion monitor-
ing. Importantly, the observed biases were generally 
more pronounced than in the previous study, potentially 
attributed to the range of impairments encompassed 
in our population. This diversity, reflected in a walking 
speed range of 0.03 to 2.00 m/s, slower than the 0.24 to 

2.40  m/s range of our previous study, emphasizes the 
real-world applicability of our findings to a more exten-
sive spectrum of stroke-related gait abnormalities. Addi-
tional methodological differences could account for the 
systematic biases between the EGSA and GAITRite. For 
instance, whereas the GAITRite measures plantar pres-
sure directly beneath the foot, the EGSA’s sensors are 
located on the shank. This spatial difference means that 
shank movements may not perfectly synchronize with 

Table 3  Temporal gait parameters (median and interquartile range) from each system, as well as reliability (ICC), agreement (b ± LoA), 
and accuracy (MdAPE) of the EGSA relative to the GR across subgroups. N is the number of instances for each temporal parameter
Parameter ICC b ± LoA (s) MdAPE Ov (%) MdAPE Subgroup (%) p value
Stride time
(n = 3958)

0.979 -0.003 ± 0.397 1.33 [2.64] S 2.31 [5.40] < 0.001 (S vs. M)
M 1.34 [2.38] < 0.001 (S vs. F)
F 1.05 [1.76] < 0.001 (M vs. F)
Sym 1.12 [1.94] < 0.001
Asym 1.64 [3.34]
P 1.59 [3.01] < 0.001
Np 1.15 [2.19]

Step time
(n = 4418)

0.953 0.001 ± 0.360 3.66 [6.31] S 5.46 [7.67] < 0.001 (S vs. M)
M 4.09 [6.78] < 0.001 (S vs. F)
F 2.74 [4.77] < 0.001 (M vs. F)
Sym 2.61 [4.46] < 0.001
Asym 5.05 [7.81]
P 3.33 [5.51] < 0.001
Np 4.00 [7.38]

Stance time
(n = 3985)

0.958 -0.076 ± 0.524 8.56 [7.98] S 6.14 [8.32] < 0.001 (S vs. M)
M 9.97 [7.33] < 0.001 (S vs. F)
F 9.44 [7.01] 0.999 (M vs. F)
Sym 9.33 [6.48] < 0.001
Asym 7.70 [9.02]
P 8.84 [8.62] < 0.001
Np 8.50 [7.22]

Swing time
(n = 3958)

0.410 0.069 ± 0.453 21.49 [23.18] S 34.00 [44.32] < 0.001 (S vs. M)
M 23.72 [21.91] < 0.001 (S vs. F)
F 17.33 [15.32] < 0.001 (M vs. F)
Sym 18.48 [15.61] < 0.001
Asym 25.49 [33.57]
P 19.91 [21.96] < 0.001
Np 23.24 [24.45]

Single support time
(n = 3958)

0.410 0.069 ± 0.453 22.13 [24.30] S 35.19 [44.94] < 0.001 (S vs. M)
M 24.00 [21.94] < 0.001 (S vs. F)
F 17.32 [15.43] < 0.001 (M vs. F)
Sym 18.63 [16.44] < 0.001
Asym 26.20 [33.57]
P 23.24 [24.45] < 0.001
Np 19.91 [21.96]

Double support time
(n = 3954)

0.901 -0.158 ± 0.704 31.12 [27.04] S 17.62 [19.75] < 0.001 (S vs. M)
M 29.92 [20.09] < 0.001 (S vs. F)
F 40.34 [22.87] < 0.001 (M vs. F)
Sym 36.21 [22.01] < 0.001
Asym 25.63 [27.41]
P 31.54 [27.18] 0.855
Np 31.53 [26.62]



Page 10 of 13Lanotte et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:219 

foot contact events. Thus, future work should also con-
sider validating the EGSA against other gold standard, 
high-resolution systems, such as optical motion capture, 
so that potential differences from sensor positioning can 
be quantified.

Our hypothesis regarding larger errors for slow and 
asymmetric subgroups was supported, with some excep-
tions noted for the stance and double support estimates. 
These exceptions, particularly the significantly lower 
MdAPE at slow walking speeds compared to medium and 
fast speeds, can be attributed to the use of the MdAPE. 
The discrepancy arises due to the absolute error being 
small when contrasted with the reference value that is 
very large at slow speeds. Furthermore, the breakdown of 
error between sides highlighted increased errors in step 
time and swing phase estimates on the non-paretic side, 
as reflected by the difference in timing accuracy between 

the paretic and non-paretic sides (Table  2). This aligns 
with biomechanical expectations, as weight transfers for-
ward, while the paretic leg bears the weight. Due to weak-
ness or impaired motor control on the paretic leg, stroke 
survivors often rely more heavily on their non-paretic leg 
to maintain stability and generate propulsive forces in 
gait, making the swing of the non-paretic leg quick. The 
SGSA may struggle to accurately identify these compen-
satory FO events.

Gait event segmentation algorithms hold promise 
when applied during clinical assessments or ongoing 
treatments. These algorithms segment gait sequences 
into individual strides, offering valuable insights into an 
individual’s gait dynamics. Various measurement systems 
have been proposed for this purpose, including plantar 
pressure measurement [38], optical motion capture sys-
tems [39], camera-based computer vision systems [40], 

Fig. 4  Temporal gait parameter estimates of the EGSA compared to GAITRite. Bland–Altman plot, and speed-/asymmetry-/paretic side- error analyses for 
(a)–(b) stride time, (c)-(d) step time, (e)–(f) stance time, (g)–(h) swing time, (i)-(j) stride support time, (k)–(l) double support time. Boxes range from the 
25th to the 75th percentiles and the intermediate line represents the median value. Significant difference between error across speed ranges and asym-
metry levels in (b), (d), (f), (h), (j) and (l) was indicated an asterisk (*, p < 0.001)

 



Page 11 of 13Lanotte et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:219 

and IMUs [23, 41]. Among these, IMUs are not confined 
by spatial limitations such as occlusions and can track 
movements in naturalistic settings, allowing clinicians 
to administer therapy without the constraints of fixed 
equipment. Several gait analysis systems based on IMU 
have been developed, each with varying sensor place-
ment on the body (such as the foot, pelvis, and legs) and 
segmentation algorithms, resulting in different levels of 
performance. However, the strict regulation and close 
monitoring of therapy dosage in IRFs can sometimes hin-
der the integration of technology. Limitations in time, 
perceived lack of benefits, and reimbursement challenges 
may lead to reduced implementation [42]. Hence, more 
validation studies are necessary to support the opti-
mal adoption of this technology, facilitating a quick and 
informed utilization.

The EGSA, with its robust application to slow and 
asymmetric walkers, presents a practical solution for 
IRFs, automating the measurement of temporal gait 
parameters with minimal requirement of sensors on 
a patient body. Our ultimate goal is to adapt the EGSA 
to clinical care; by accurately detecting gait events in 
real-time, the EGSA enables clinicians to make more 
informed decisions about therapy adjustments in real-
time. Unlike approaches requiring cumbersome labora-
tory equipment, the EGSA offers a balance of accuracy 
and practicality for clinicians working in the IRF setting 
and beyond. This positions EGSA as a more adaptable 
tool compared to the existing methodologies employing 
computer vision, aligning with studies that emphasize 
the need for efficient and accurate gait analysis in clinical 
settings.

This study has several limitations. The biomechani-
cally driven enhancements in the algorithm were based 
on the assumption that fundamental gait events are vis-
ible in the sensor signals of the lower legs. The availabil-
ity of a comprehensive annotated dataset played a crucial 
role in refining these conditions, yet ongoing efforts can 
further enhance the algorithm’s detection rate. Similarly, 
the template for DTW FC detection was constructed 
from signals of healthy controls, therefore neglecting the 
post-stroke gait diversity. However, because the array of 
impairments present in individuals after a stroke is wide-
ranging, the definition of a unique template valid for the 
full spectrum of impairments is challenging. Analysis-
wise, the imbalance in data incorporation across different 
time points may affect the analysis. Secondly, the limited 
data samples in each subgroup led to reduced statistical 
power in the Mann-Whitney U test. Lastly, the absence 
of some participants post-hospital discharge resulted in 
fewer events recorded at later time points post-stroke; 
however, we believe this does not significantly impact the 
validity of our analysis because we showed an equivalent 

performance between SGSA and EGSA when applied to 
the chronic phase of the stroke.

These methods can be utilized with other conventional 
IMUs as well, as demonstrated by our ability to imple-
ment them in two different brands of sensors. Although 
it may add complexity to the setup, adding sensors on the 
feet and information from other modalities (i.e., magne-
tometer) may further enhance performance and facilitate 
the computation of spatial parameters [43]. Our pro-
posed approach aims to reduce complexity of the sensor 
system by utilizing only lower leg IMUs, thereby simpli-
fying implementation in patient care units. Overall, we 
expect the EGSA to be a more robust approach to IMU-
based gait segmentation across healthy and clinical popu-
lations with different gait impairments. While we have 
demonstrated that the EGSA offers population-specific 
improvements for post-stroke gait segmentation, future 
work will investigate its applicability as a generic, trans-
diagnostic gait segmentation tool by testing its perfor-
mance across various clinical populations.

Conclusions
The study developed and validated an enhanced gait seg-
mentation algorithm for inertial sensors, demonstrat-
ing its efficacy in detecting gait events among patients 
undergoing post-stroke rehabilitation. This advancement 
addresses the limitations of existing gait analysis meth-
ods, especially in clinical populations with a broad range 
of impairments. This enhancement offers a contribution 
to rehabilitation medicine by providing clinicians with a 
reliable, non-invasive method for detailed gait analysis 
using two leg-worn sensors. Future applications of this 
algorithm can facilitate personalized rehabilitation plan-
ning, monitor progress, and ultimately contribute to bet-
ter patient outcomes in inpatient rehabilitation facilities.
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