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Abstract 

Understanding the psychophysiological state during robot-aided rehabilitation is crucial for assessing the patient 
experience during treatments. This paper introduces a psychophysiological estimation approach using a Fuzzy Logic 
inference model to assess patients’ perception of robots during upper-limb robot-aided rehabilitation sessions. 
The patients were asked to perform nine cycles of 3D point-to-point trajectories toward different targets at varying 
heights with the assistance of an anthropomorphic robotic arm (i.e. KUKA LWR 4+). Physiological parameters, includ-
ing galvanic skin response, heart rate, and respiration rate, were monitored across ten out of forty daily sessions. 
This data enabled the construction of an inference model to estimate patients’ perception states. Results expressed 
in terms of correlation coefficients between the patient state and the increasing number of sessions. Correlation coef-
ficients showed statistically significant strong associations: a state of heightened engagement (formerly described 
as “Excited”) had ρ = −0.73 (p-value=0.01), and a more calm and resting state (namely “Relaxed” state) had ρ = 0.70 
(p-value=0.02) with the number of sessions completed. All patients had positive interaction with the robot, initially 
expressing curiosity and interest that gradually shifted to a more “Relaxed” state over time.
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Introduction
Recent advancements in robotic technologies have revo-
lutionized clinical therapy for individuals with musculo-
skeletal [1, 2] and neuromuscular [3, 4] disorders. These 
systems offer distinct advantages by (i) providing objec-
tive measurements of a patient motor performance [5], 
(ii) actively engaging patients through biofeedback mech-
anisms [6] and immersive virtual reality games [7, 8], and 
(iii) dynamically adjusting assistance levels based on the 
user overall condition [9].

Despite the significant advancements and benefits 
offered by robotic technologies in rehabilitation, there is 
still a notable gap in fully characterizing a patient state 
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during therapy sessions. While many studies in robot-
aided rehabilitation have primarily focused on assessing 
user performance through kinematic [10] and biome-
chanical perspectives [11], these metrics provide only a 
partial understanding of the experience. Neglecting the 
PsychoPhysiological (PP) aspects, such as emotional 
states, stress levels, and overall perception of the tech-
nology, can limit the understanding of how patients truly 
engage with and benefit from robotic rehabilitation [12]. 
By broadening the focus beyond kinematics and biome-
chanics to include the patient’s PP state, it is possible to 
gain a deeper insight into the users’ perception of trust 
in robotic systems [13, 14]. This insight is essential in 
designing user-centered technologies and the optimiza-
tion of rehabilitation protocols to enhance patient experi-
ence and outcomes [15].

According to the Russell circumplex model [16], the PP 
state of a user can be represented by two key dimensions: 
Arousal and Valence. Arousal reflects the level of a per-
son’s engagement or reaction to a stimulus, while Valence 
indicates the positive or negative quality of the user’s 
experience. These dimensions are commonly assessed 
using the Self-Assessment Manikin (SAM) question-
naire [17], a visual tool designed to capture Arousal and 
Valence perceptions. Administered immediately after a 
stimulus or task, the SAM questionnaire provides a quick 
and intuitive method to collect data on participants’ emo-
tional responses. Collecting this information immediately 
following a robot-aided rehabilitation session allows for 
a quick and intuitive assessment of patients’ perceptions 
regarding the impact of the robot on their emotional 
state [18]. However, relying solely on the SAM question-
naire at the end of each robot-aided rehabilitation session 
presents challenges. Firstly, the SAM questionnaire pro-
vides a general overview of the participant’s perception 
of the entire session, lacking the granularity to capture 
the specific emotional states experienced throughout the 
session. Moreover, the responses obtained from the SAM 
questionnaire are entirely subjective, lacking an objective 
foundation or measurable parameters. This subjectivity 
poses challenges in accurately capturing and quantifying 
patients’ emotional states. As a result, a more continu-
ous and objective method is needed to assess patients’ PP 
states during robot-aided rehabilitation sessions. Such a 
method would allow for real-time monitoring of Arousal 
and Valence levels, providing a comprehensive under-
standing of patients’ emotional experiences and their 
impact on therapy outcomes.

In the literature, some approaches have been proposed 
to estimate the patients’ PP state by leveraging measur-
able processes such as physiological parameters [19, 20]. 
These parameters, closely tied to the autonomic response 
of the nervous system, can be readily associated with 

the user’s PP state. During robot-aided rehabilitation, 
physiological responses have been monitored, revealing 
distinct patterns based on the user interaction with the 
rehabilitation robot or haptic interface [21]. Studies have 
shown that users exhibit varying physiological responses 
corresponding to different levels of physical and cogni-
tive workloads [22]. This suggests that the user’s PP state 
can be inferred from their physiological reactions during 
the rehabilitation session, providing valuable insights into 
their emotional and cognitive engagement with the tech-
nology [23].

Fuzzy Logic stands as a prominent method for continu-
ous estimation of users’ PP states in rehabilitative con-
texts and various other scenarios. The Two-step Fuzzy 
Logic approach has been effectively applied to derive 
the PP state of users engaged with planar rehabilitation 
robots, enabling adjustments to the difficulty levels of 
virtual reality games [24] or adaptation of robot stiffness 
[25]. In [26], a method was proposed to continuously 
quantify the emotional states of gamers interacting with 
entertainment technologies. Through Two-step Fuzzy 
Logic, the participants’ physiological responses were 
translated into Arousal and Valence, further categorized 
into emotional states such as fun, excitement, frustra-
tion, challenge, and boredom. This approach allowed the 
mapping of imprecise inputs into emotions, offering an 
objective means to monitor user experiences. Another 
instance of Fuzzy Logic application in retrieving users’ 
PP states is highlighted in [27]. In this study, participants 
underwent treadmill-based exoskeleton-assisted walking, 
with synchronous collection of physiological parameters. 
The Two-step Fuzzy Logic method was utilized to esti-
mate four PP indicators: attention, stress, energy expend-
iture, and fatigue.

Based on the existing literature, Fuzzy Logic has proven 
effective in translating physiological data into meaning-
ful indicators of the user’s emotional and cognitive state, 
offering insights for enhancing rehabilitation strategies. 
However, existing studies mainly focus on estimating 
the PP state in a single session for user experiences. This 
reveals a gap in the literature regarding the application 
of these methods across multiple robot-aided rehabilita-
tion sessions to track the evolution of PP states over time. 
Addressing this gap is crucial for longitudinal studies, 
enabling the assessment of how patient-robot interaction 
evolves. Currently, limited research in this area hinders 
understanding the long-term impact of robot-aided reha-
bilitation on patients’ PP responses.

Therefore, the objective of this study is to develop 
a psychophysiological state estimation approach and 
apply it during multiple robot-aided rehabilitation 
sessions to assess how the perception of the patient-
robot interaction evolves over consecutive treatments. 
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By analyzing the evolution of PP states, this research 
seeks to provide valuable insights into the long-term 
impact and effectiveness of robot-aided rehabilita-
tion on patients’ psychophysiological responses. Fur-
thermore, having a methodology for estimating the 
PP status of patients during the rehabilitation proto-
col allows the robotic treatment to be adapted to the 
needs of the specific patient.

The rest of the paper is structured as follows: Sec-
tion  2 and Sect.  3 present the proposed psychophysi-
ological estimation method and its experimental 
evaluation, respectively. In particular, the PP estima-
tion approach, the experimental setup, and the pro-
tocol of the robot-aided rehabilitation session are 
presented. Section 4 shows and discusses the obtained 
experimental results. Lastly, Sect.  5 summarizes the 
principal outcomes of the research and draws the 
future work.

Psychophysiological estimation
The block scheme of the PP state estimation approach 
applied in this work is highlighted in Fig. 1. The patient 
PP state estimation approach takes as input the physi-
ological parameters of the patients interacting with 
the rehabilitation robot. Specifically, the cardiorespira-
tory activity and the Galvanic Skin Response (GSR) are 
monitored during the entire rehabilitation session. The 
acquired parameters are then normalized to enhance the 
responses with respect to the subject’s resting condition, 
referred to in the following as the baseline, and given as 
input to a Fuzzy Logic model. This Fuzzy Logic model 
serves as an inference system implemented to map physi-
ological responses onto the defined PP states by exploit-
ing Russel’s circumplex model. It organizes affective 
states along two dimensions, Valence (pleasant-unpleas-
ant) and Arousal (high-low), and provides a framework 
for understanding and categorizing the patient’s emo-
tional and affective states during the rehabilitation pro-
cess. By utilizing this model within the Fuzzy Logic 
system, it is possible to obtain a deep understanding of 
the complex patient state.

Physiological monitoring system
In the process of estimating the PP state of patients, it 
is paramount to gather physiological data during their 
interaction with the rehabilitation robot. This involves 
monitoring and quantifying both GSR, which reflects 
cognitive activity, and cardiorespiratory activity, provid-
ing insights into the physical aspect of the condition of 
the patient.
GSR is one of the most valuable physiological param-

eters for estimating a user’s Arousal level [28] and cog-
nitive load [29]. This is due to the fact that the skin’s 
electrical properties undergo changes whenever an indi-
vidual is stimulated by visual, acoustic, haptic, or physical 
stimuli. Starting from the raw GSR signal, it is possible 
to compute its tonic level called Skin Conductance Level 
(SCL). Specifically, the SCL can be retrieved by apply-
ing a 4th order Butterworth low-pass filter with a cut-
off frequency of 0.1 Hz to the raw GSR. SCL represents 
the baseline GSR level in the absence of specific external 
stimuli and/or user activity. Furthermore, the rapidly 
changing phasic GSR component, also called Skin Con-
ductance Response (SCR), can be computed from the 
raw GSR to detect instantaneous spiking activity, highly 
correlated with the administration of specific stimuli and 
useful to design reactive robot behaviors [30]. However, 
since the primary objective of this work is to quantify 
the overall psychophysiological state of the patients dur-
ing the overall rehabilitation session, the methodology 
adopted in this paper follows the guidelines provided by 
[31] in which only the tonic component was employed.

On the other hand, HR and RR serve as fundamental 
indicators of the physical exertion or workload expe-
rienced by an individual [32]. When a person engages 
in physical activity, the body’s demand for oxygen and 
energy increases. Consequently, there is a natural ten-
dency for both HR and RR values to rise, reflecting the 
body’s physiological response to this heightened demand. 
These changes in HR and RR are integral components of 
the body’s adaptive mechanism to meet the increased 
metabolic needs associated with physical exertion. 
Moreover, these physiological parameters are not solely 
influenced by physical exertion; they also respond to vari-
ous stimuli of different natures [33]. Studies have shown 

Fig. 1 Block scheme of the psychophysiological state estimation approach applied during upper-limb robot-aided rehabilitation
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that HR, measured in beats per minute [bpm], tends to 
decelerate following the administration of certain stimuli 
[34]. Conversely, an increased HR or significant variabil-
ity compared to the baseline can indicate an excited or 
emotionally aroused condition. Similarly, changes in the 
RR, expressed in breaths per minute [bpm], can also be 
influenced by different stimuli [35]. While modifications 
in RR may occur at a slower pace than those observed in 
other physiological signals, it is important to recognize 
that both HR and RR can respond to a variety of stimuli, 
including emotional, sensory, or cognitive stimuli. These 
changes in HR and RR reflect the dynamic interplay 
between the body’s physiological responses to external 
stimuli and internal states.

Given the high intra- and inter-subject variability of 
physiological signals as a result of age, gender, time of 
day, and other factors, all the collected data required a 
normalization procedure with respect to a baseline value 
acquired from the volunteer blindfolded and acoustically 
isolated [36]. Given the physiological parameters vector 
defined as X = [SCL,HR,RR] , the normalization proce-
dure removes the baseline physiological condition of the 
patient as

where t is the time stamp, X(t) is the physiological vec-
tor sampled at the t-th time instant, and XB is the mean 
physiological parameter vector computed during the 
resting baseline phase.

Psychophysiological estimation model
The physiological responses Xr , computed during the 
rehabilitation session, serve as input to a Fuzzy Logic 
estimation model [37]. A Fuzzy Logic inference model is 
a system that utilizes fuzzy logic to handle imprecise or 
uncertain information. Unlike traditional logic that deals 
with binary true or false values, fuzzy logic allows for 
degrees of truth, enabling a more flexible and nuanced 
approach to decision-making.

In this scenario, a Fuzzy Logic inference model is par-
ticularly useful for several reasons. Firstly, it allows for 
the integration of various physiological parameters, 
which often exhibit complex and overlapping patterns in 
real-world data. Fuzzy logic excels at handling such com-
plexities by defining Membership Functions (MFs) that 
capture the fuzzy boundaries between different states 
of these parameters. Secondly, Fuzzy Logic models are 
adept at interpreting ambiguous or vague inputs, which 
is often the case with human physiological responses. By 
defining linguistic variables such as “LOW”, “MID”, and 
“HIGH” for each parameter, the model can effectively 
categorize and analyze the patient’s PP state. Moreover, 

(1)Xr(t) =
X(t)− XB

XB

the Fuzzy Logic inference model offers interpretability, as 
its conditional “IF-THEN” rules are grounded on human-
understandable linguistic terms rather than purely math-
ematical formulations.

Three MFs are generated using data collected from all 
enrolled participants for each input signal of Xr . Gaussian 
membership functions were chosen for this application 
because they provide a smooth, continuous representa-
tion of physiological data and can handle uncertainty in 
boundaries more effectively. Although other types of MFs 
could have been considered (e.g., triangular or trapezoi-
dal), Gaussian functions were selected due to their flex-
ibility in capturing gradual transitions between different 
levels of physiological activation. This approach aligns 
well with the real-world variability present in human 
physiological responses. Even though the data is not 
assumed to follow a perfect normal distribution, Gauss-
ian MFs offer a robust method for capturing the central 
tendency (mean) and variability (standard deviation) in 
the dataset, ensuring that overlapping patterns between 
levels are smoothly represented.

Following the methodology presented in [27], the 
physiological responses were divided into three levels, 
represented by the linguistic variables “LOW”, “MID”, 
and “HIGH”, following a structured process. First, the 
collected physiological responses are sorted in ascending 
order to arrange the data by gradually increasing activa-
tion levels. This sorted dataset is then divided into three 
equal parts, ensuring that each part represents one of 
the three levels of physiological activation. This method 
ensures that the division into “LOW”, “MID”, and “HIGH” 
is directly based on the distribution of the collected data, 
making the categorization proportional to the actual 
physiological responses observed in the participants. 
Given the three sets, the center of each Gaussian is the 
mean value of the distribution of collected physiological 
responses. Additionally, the standard deviation of these 
Gaussian functions is set equal to that of the data, ensur-
ing an accurate representation of the variability within 
the dataset.

The outputs of the Fuzzy Logic estimation model 
serve to represent the PP state of the patient, expressed 
in terms of Arousal and Valence. These PP state values 
are constrained to a range from 0 to 1, providing a nor-
malized scale for interpretation. In the output layer, five 
equally spaced Gaussian MFs are constructed, enabling 
the model to capture and characterize different levels of 
the patient’s PP state with greater detail. These five lev-
els are linguistically represented by the activation levels 
“LOW”, “MID-LOW”, “MEDIUM”, “MID-HIGH”, and 
“HIGH”.

Once the MFs are defined, a set of fuzzy rules can be 
established and implemented to estimate Arousal and 
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Valence. Following the literature, a total of 17 rules 
were carefully crafted to derive estimations of Arousal 
and Valence based on the physiological response vector 
Xr [22, 24, 29]. Lastly, the fuzzy operators were defined 
in the MATLAB Fuzzy Logic Toolbox, and used to ana-
lyze the collected data (MATLAB R2020b). The Mam-
dani method was selected for its intuitive “IF-THEN” 
rules and ability to generate flexible, interpretable 
fuzzy outputs, which are ideal for handling complex 
physiological data. Unlike Sugeno, which provides pre-
cise outputs, Mamdani better captures general trends 
and variability in the patient’s psychophysiological 
state, making it more suitable for this application. The 
Boolean AND and OR operators were replaced with 
min() and max(), respectively, as they offer a smooth 
transition between overlapping membership values, 
which is more appropriate for physiological signals that 
naturally involve gradual transitions rather than strict 
binary distinctions. The implication and aggregation 
methods are min() and max() respectively. The imple-
mented defuzzification process is the area centroid or 
center of gravity. The resulting Fuzzy Logic estimation 
module is schematically reported in Fig. 2. In particu-
lar, the input layer, made of the three MFs of the Xr , the 
Estimation Module itself implementing the conditional 
rules, and the two outputs are reported in Fig. 2 from 
the left side to the right, respectively.

The outputs of the Fuzzy Logic inference system, 
namely the Arousal and Valence values, serve as key 
indicators for interpreting the Psychophysiological (PP) 
state of the participants. In this study, four distinct PP 
states corresponding to each quadrant of the Valence-
Arousal plane were defined as follows:

• High Valence AND High Arousal: This condition 
signifies a high level of participant engagement and 
positive affect. In this PP state, termed as “Excited”, 
patients exhibited curiosity and enjoyment while 
interacting with the robot. They were actively 

involved and found the experience stimulating and 
rewarding.

• High Valence AND Low Arousal: Lower Arousal val-
ues within the context of high Valence indicate a state 
of calmness and positive emotion. This relaxed and 
positive condition was labeled as “Relaxed”. Patients 
in this state were at ease, experiencing a pleasant and 
tranquil interaction with the robot.

• Low Valence AND Low Arousal: Participants fall-
ing into this quadrant experienced a state of “Bored”, 
characterized by low arousal and negative valence. 
This negative calm condition reflects a lack of interest 
or engagement, where patients may have felt disinter-
ested or uninvolved during the interaction.

• Low Valence AND High Arousal: When a patient 
experiences high arousal along with low valence, it 
indicates a state of agitation and negative emotion. 
This PP state is termed as “Stressed”, where patients 
are agitated by strong negative emotions, possibly 
feeling overwhelmed or anxious during the interac-
tion.

By categorizing the PP states in this manner, it is possible 
to quantify how participants responded emotionally and 
physiologically to the rehabilitation robot use.

As a synthetic indicator, the percentage of time that a 
patient spent in a specific PP state ( TPstate ) during each 
robot-aided rehabilitation session was computed. This 
calculation describes how much of the session time was 
occupied by each emotional and physiological state. The 
equation used to compute this percentage of time spent 
in a PP state ( TPstate ) is

where Tstate is the total duration of time spent in a cer-
tain PP state among {“Excited”, “Relaxed”, “Bored”, and 
“Stressed”}, and Ttot is the total duration of the rehabilita-
tion session.

Experimental validation
Experimental setup
The adopted robot-aided orthopedic rehabilitation plat-
form is composed of: i) a 7-degree-of-freedom anthropo-
morphic robotic arm (i.e. the KUKA Light Weight Robot 
4+); ii) a custom 3D printed end-effector, to support the 
patient wrist; iii) a purposely developed virtual reality 
environment developed using Unity and projected onto 
a 2D monitor to show to the patient the task to be per-
formed and iv) a physiological monitoring system. Fig. 3 
shows a participant wearing the physiological monitoring 
system while interacting with the robot.

(2)TPstate =
Tstate

Ttot
· 100

Fig. 2 Fuzzy Logic inference system designed for the patients’ PP 
state estimation
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The robot is controlled through Robot Operating Sys-
tem (ROS) Kinetic middleware on Ubuntu 16.04 LTS 
using a tunable interaction control described by the 
equation:

Here, τc denotes the torque applied to the robot joints. 
The terms B(q) and n(q, q̇) account for inertial properties 
and dynamic effects including Coriolis and gravitational 
forces. J†A(q) is the pseudo-inverse matrix of the analyti-
cal Jacobian. Additionally, x̃r and x̃t indicate the radial 
and tangential pose errors concerning the desired pose 
xd(t).

The interaction controller offers two supportive 
components:

• ¯Krx̃r maintains the robot end-effector close to the 
intended path.

• ¯Ktx̃t moves patients tangentially to progress along 
the trajectory within a predetermined timeframe.

Expanding upon this concept, ¯Kr = ATKrA and 
¯Kt = ATKtA , where A represents the adjoint matrix. 
This matrix serves as the transformation from the 
pose error expressed in the base frame [XB,YB,ZB] to 
the moving frame [XT ,YT ,ZT ] , whose XT  axis is tan-
gentially aligned to the planned path. The gain matri-
ces are defined as Kr = diag(0, k , k , kφ , kφ , kφ) and 
Kt = diag(kt , 0, 0, 0, 0, 0) , adjusting the system’s stiff-
ness radially and along the task direction, respectively. 
Specifically, kt = 0 N/m when the patient can move 
independently toward the target, and kt = k when the 
patient requires assistance. The influence of the control-
ler gains on tracking errors was tested for two different 
values of k = {300, 1000} N/m, in a previous study [25]. 
The mean tracking errors resulted to be 7.8± 3.9 · 10−3 
m to 17.7± 8.3 · 10−3 m for k = 1000 N/m and k = 300 
N/m, respectively. In this experiment, the robot motion 
planner generates three-dimensional point-to-point 

(3)τc = B(q) · J†A(q)[K̄rx̃r + K̄tx̃t] + n(q, q̇))

movement to be executed in a maximum of 7.5 seconds 
with the k and kφ control gains set at 1000 N/m and 800 
Nm/rad, respectively, because all the patients enrolled 
in this study were in the early stages of their rehabilita-
tion treatment. At this stage, higher stiffness was prior-
itized to ensure maximum assistive intervention from 
the robot and guarantee controlled movements.

Safety measures were a key consideration during 
the design of the experimental setup. The control law 
implemented in Eq. (3) derives from an impedance 
control and ensures safe physical interaction with the 
patient, managing the interaction force for smooth and 
controlled movements. Additionally, software safety 
limits were set to stop the therapy if force or velocity 
thresholds were exceeded. More in detail, whenever the 
robot is asked to provide a force higher than 50 N or the 
end-effector is manipulated at a speed higher than 0.2 
m/s, the software interrupts the session. A force limit 
of 50 N is typically considered safe for human-robot 
interaction, as it is below the threshold that could cause 
harm to soft tissues [38]. Similarly, a velocity limit of 
0.2 m/s ensures controlled and smooth movements, 
reducing the risk of sudden, high-speed actions that 
might overwhelm or shock the patient [39]. An emer-
gency stop button, operated by a technician present 
during all sessions, was also included to immediately 
halt the robot if necessary. These measures ensured 
that any accidental interactions were handled safely, 
with the robot automatically stopping when required.

The physiological monitoring system measures 
the GSR, the heart activity, and the respiration of the 
patients. The GSR is measured by using two electrodes 
of the Shimmer 3 GSR+ Unit placed on the index and 
middle fingers of the non-dominant hand. Such a differ-
ence of potential, collected with a sampling rate of 52.1 
Hz, allows for retrieving information about the user’s 
electrodermal activity. Both the electrical and respira-
tory activities of the enrolled participants are moni-
tored by using the BioHarness 3.0 chest belt, developed 

Fig. 3 Experimental setup used to test the proposed psychophysiological estimation approach
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by  ZephyrTM Technology. Such a wearable device fuses 
capacitive and stretch sensors: the former assesses the 
electrical activity of the heart, and the latter measures 
the deformations of the rib cage induced by respira-
tion. To better measure the electrical changes due to 
the heartbeats, the BioHarness sensor is worn against 
the skin, at the height of the sternum. The physiologi-
cal data are acquired synchronously under Yet Another 
Robot Platform (YARP) [40] at 40 Hz.

Experimental protocol
Eight orthopedic patients (mean age 63.3± 11.8 ) who 
suffered from musculoskeletal disorders were enrolled 
in this longitudinal study. All participants underwent a 
surgical procedure, whose characteristics are shown in 
Table 1.

In particular, four patients underwent rotator cuff 
suture, while one patient had an open fracture of the 
humerus treated surgically. Following the surgical inter-
vention, all patients adhered to a standard post-operative 
period of upper-limb immobilization. After this immo-
bilization phase, patients began mobilization under the 
supervision of physical therapists using conventional 
rehabilitation methods. Only once patients achieved 90 
degrees of active shoulder elevation without assistance 

were they eligible to be enrolled in the robotic rehabilita-
tion study.

At this point, inclusion criteria were applied, ensuring 
that participants had no prior experience with robotic 
systems to avoid any bias in their psychophysiological 
responses. Additionally, all participants were required to 
have normal or corrected-to-normal vision to reduce the 
risk of discomfort or disorientation from the use of vir-
tual reality. Once enrolled, the participants proceeded to 
the robot-assisted rehabilitation protocol.

Before starting the tests, participants were thoroughly 
informed about the experimental procedures, including 
the tasks they were required to perform and the pur-
pose of the physiological monitoring. Detailed instruc-
tions were given to ensure that they fully understood 
the steps involved. The rehabilitation protocol included 
twenty daily robot-aided rehabilitation sessions spread 
over one month. Among these sessions, ten were specifi-
cally designated for the patients to be equipped with a 
physiological monitoring system to assess their PP state. 
Fig. 4 reports the diagram of the protocol used in these 
experiments.

At the beginning of each experimental session, a five-
minute resting baseline was recorded to establish the 
physiological rest condition of each participant. During 
this baseline period, patients were instructed to sit com-
fortably, with their eyes blindfolded and in an acousti-
cally isolated environment, to facilitate the attainment 
of a restful state [36]. The mean values of the physiologi-
cal parameters collected during this baseline (denoted as 
XRB ) were used in Eq. (1) to compute the physiological 
responses Xr . Following the Resting Baseline recording, 
the participant progressed to the robot-aided rehabilita-
tion session itself.

Throughout all twenty sessions, patients were 
instructed to perform nine cycles of nine three-dimen-
sional reaching movements with their post-surgical 
upper limb toward targets in the Cartesian space and 
return to a resting position after each movement. During 

Table 1 Demographic characteristics of the patients enrolled in 
this study

ID Sex Age Lesion Affected limb

P1 Female 45 Rotator cuff lesion Left

P2 Female 76 Humerus fracture Left

P3 Male 56 Rotator cuff lesion Left

P4 Female 71 Rotator cuff lesion Left

P5 Male 48 Rotator cuff lesion Left

P6 Female 63 Rotator cuff lesion Right

P7 Female 69 Rotator cuff lesion Right

P8 Female 79 Humerus fracture Left

Fig. 4 Diagram of the trial stages carried out in this study
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the first session of each enrolled participant, the robot 
was placed in gravity compensation mode ( k = 0 N/m), 
allowing the patients to explore their reachable work-
space. In this phase, the target points were selected based 
on the positions the patient could comfortably reach at 
different heights without experiencing pain. The nine tar-
get positions were distributed across three angular direc-
tions and three different heights. Additionally, the resting 
position, where the patient’s shoulder was at approxi-
mately 0◦ flexion and the elbow at 90◦ , was also recorded. 
Patients then followed a trajectory displayed on a screen 
with the aid of the robot. The robot control actions, as 
presented in Eq. (3), were presented to the patients before 
starting the interaction session. This structured activity 
was designed to engage the upper limb joints and pro-
mote the recovery of the range of motion. Fig. 5A shows 
an example of the three-dimensional reaching of the tar-
get and the subsequent return to rest position. Further-
more, an insight into the virtual reality displayed to the 
patients is provided in Fig. 5B. The position of the robot’s 
end-effector is mapped to the virtual wrist of the user’s 
avatar, thereby reflecting their movements in real-time. 
The target trajectory is highlighted in pink for the user to 
follow during the task. Lastly, Fig. 5C displays a graphical 
representation of the nine target points inside the virtual 
reality environment.

It is important to note that the duration of the robotic 
rehabilitation sessions was not fixed for all participants. 
The session lengths varied because the control strategy 
allowed patients to perform the movements at their own 
natural pace. This approach ensured that participants 
could follow the trajectory according to their physical 
condition and recovery progress. The robot only inter-
vened when a reaching or return movement exceeded 
a predefined time limit, assisting as necessary to help 
the patient complete the task. Adopting Eq. (2) as a key 

performance indicator enables the management of vary-
ing session durations. This is achieved through the nor-
malization of the time spent in each state with respect to 
the session duration Ttot.

The study was conducted under Ethical Committee 
approval (Ethical Approval N. 03/19 PAR ComEt CBM) 
and following the Declaration of Helsinki. All patients 
were adequately informed about the purpose of the study 
and gave their written informed consent.

Statistical analysis
A linear correlation analysis was conducted on the col-
lected data to investigate potential changes in the TPstate 
across the rehabilitation sessions. The linear Pearson 
correlation analysis was selected as the most appropri-
ate method for measuring the strength and direction of 
linear relationships between two continuous variables. 
The objective of this study was to assess whether a lin-
ear trend existed between the percentage of time spent in 
each PP state and the number of rehabilitation sessions. 
Given the nature of the data, which involves session pro-
gression over time and proportional time spent in various 
PP states, Pearson’s correlation is an appropriate method 
for identifying potential linear associations. A test vector 
ranging from 1 to 10, representing the session number, 
was defined. For each PP state percentage, a linear Pear-
son Correlation Coefficient ( ρ ) and its associated p-value 
were computed. The significance level was set at 0.05.

The derived correlations were classified, according to 
[41], as:

• Very weak: |ρ| ≤ 0.19

• Weak: 0.20 ≤ |ρ| ≤ 0.39

• Moderate: 0.40 ≤ |ρ| ≤ 0.59

• Strong: 0.60 ≤ |ρ| ≤ 0.79

• Very strong: 0.80 ≤ |ρ| ≤ 1.0

Fig. 5 A Example of a three-dimensional reaching and returning to the rest position execution. B Insight on the virtual reality game. C Graphical 
representation of the nine target points inside the virtual reality game
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A correlation was considered statistically significant if 
the p-value was ≤ 0.05 . This analysis aimed to identify 
any noticeable trends or patterns in the time spent in dif-
ferent PP states throughout the rehabilitation sessions, 
providing insight into the patients’ psychophysiological 
responses throughout the rehabilitation program.

Results and discussions
All participants successfully completed the robot-aided 
rehabilitation sessions without reporting any significant 
discomfort, indicating that the tasks were well-tolerated 
and within their physical capabilities.

Fig.  6 reports the raw data extracted from the robot 
during the first three cycles of a representative partici-
pant’s nine three-dimensional reaching movements. This 
participant was selected because his responses aligned 
with the overall trends observed in the study, provid-
ing a clear and representative example of the robot tra-
jectories and physiological changes recorded during the 
rehabilitation sessions. More in detail, the desired and 
current positions, namely pd and p, along with the forces 
exchanged at the robot end-effector are reported in the 

left column of Fig.  6. The joint trajectories of the robot 
and a three-dimensional representation of the assigned 
reaching and returning to rest position tasks are pre-
sented in the right column.

Moreover, Fig. 7 reports a comprehensive overview of 
the physiological responses during the first 5 minutes of 
that robot-aided rehabilitation session. More in detail, 
the top panel displays the desired and actual trajectories 
of the robot along the z-axis, just to provide a reference 
with respect to the motion of the robot. The second panel 
shows the GSR in [ µS ] over time. As the robot starts 
delivering the therapy session, i.e. starts moving, there 
is a notable increase in the GSR levels. This rise suggests 
an elevated physiological response, possibly indicating 
increased engagement or arousal. The third panel illus-
trates the HR in [bpm] over time. Despite fluctuations, no 
distinct pattern of significant increase is observed, which 
could indicate substantial physical effort or stress. The 
fourth panel depicts the RR in breaths per minute [bpm] 
over time. Here, a noticeable decrease in RR is observed. 
This decline in RR may signify the onset of fatigue, pos-
sibly due to prolonged physical exertion during the 

Fig. 6 Raw data collected from the robot during one experimental session. The left column reports the desired pd and current p positions 
along x, y, and z and the forces exchanged at the end-effector, i.e. Fx , Fx , and Fz . The right column displays the trajectories in the joint space 
and a three-dimensional representation of the assigned reaching and returning to rest position tasks
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rehabilitation session [42]. Lastly, the estimated PPstate 
in terms of Arousal and Valence is reported. Here, it is 
worth observing that the proposed estimation approach 
is capable of computing per each time instant the PP con-
dition of the user.

The bar plot in Fig. 8 displays the TPstate calculated for 
the eight participants across the ten robot-aided reha-
bilitation sessions. Each bar represents the mean value 
of TPstate for the respective PP state, with error bars indi-
cating the standard deviation. This plot provides a visual 
representation of how the time spent in each PP state 
varies across the rehabilitation sessions allowing for an 
assessment of trends or consistency in the distribution of 
time spent in different PP states throughout the sessions.

Firstly, it is notable that the valence of the participants’ 
experience, as represented by the “Excited” and “Relaxed” 
states, has consistently been positive. This suggests 

that, overall, the participants felt positively engaged and 
relaxed during the rehabilitation sessions. This positive 
valence is an encouraging outcome in terms of patients’ 
acceptance of and satisfaction with the treatment. Addi-
tionally, there is no discernible temporal trend observed 
in the TPstate of the PP states associated with negative 
valence, specifically “Stressed” and “Bored”. Throughout 
the rehabilitation treatment, instances of these negative 
emotions were infrequent and irregular, with their occur-
rences being minimal. This indicates that the participants 
rarely experienced extended periods of negative emo-
tional states during the sessions.

The statistical analysis of the correlation between the 
TPstate and the increasing number of sessions provides 
insights into the relationship between the patients’ states 
and their repeated interaction with the rehabilitation 
robot. Table  2 presents the correlation coefficients ρ 

Fig. 7 Raw physiological signals collected during a robot-aided rehabilitation session along with the PPstate estimated in terms of Arousal 
and Valence
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and the corresponding p-values resulting from the lin-
ear Pearson Correlation analysis. Statistically significant 
results (p-value< 0.05 ) are reported in bold.

The correlation analysis revealed a strong negative 
correlation ( ρ = −0.73 ) between the time spent in the 
“Excited” state and the number of completed rehabilita-
tion sessions. This relationship was statistically signifi-
cant with a p-value of 0.01. These results suggest that as 
patients progressed through more rehabilitation sessions, 
they tended to spend less time in the “Excited” state. This 
could indicate a potential decrease in the level of excite-
ment or arousal experienced by patients as they became 
more familiar with the rehabilitation process or as their 
overall condition improved.

The “Relaxed” state demonstrated a notable positive 
correlation ( ρ = 0.70 ) with the number of sessions com-
pleted, yielding a significant p-value of 0.02. This finding 
suggests a trend where, as the number of rehabilitation 
sessions increased, patients were more likely to spend 
increased amounts of time in the “Relaxed” state. This 
implies that the rehabilitation program may have had a 
calming and beneficial effect on the patients, leading to 
an increased sense of relaxation throughout the sessions.

The correlation analysis revealed interesting findings 
regarding the “Bored” and “Stressed” states. The “Bored” 
state showed a very weak positive correlation ( ρ = 0.13 ) 
with the number of sessions completed, with a non-sig-
nificant p-value of 0.71. This implies that there was no 

substantial relationship between the time spent in the 
“Bored” state and the number of completed sessions. 
Similarly, the “Stressed” state also demonstrated a very 
weak positive correlation ( ρ = 0.09 ) with the number of 
sessions, with a non-significant p-value of 0.80. This sug-
gests that the time spent in the “Stressed” state did not 
significantly vary as the number of sessions increased. 
These results indicate that neither the “Bored” nor the 
“Stressed” state showed a meaningful association with 
the progression of rehabilitation sessions.

In summary, the correlation analysis revealed distinc-
tive patterns. Patients tended to spend less time in the 
“Excited” state as they completed more sessions, suggest-
ing a potential decrease in arousal levels with increased 
familiarity or improved condition. Conversely, the 
“Relaxed” state showed a positive correlation with session 
completion, indicating a beneficial calming effect of the 
program.

These results suggest that the proposed estimation 
approach captures the modifications of the patient’s emo-
tional states during the robot-aided rehabilitation ses-
sions. This capability not only enables the quantification 
of the quality of human-robot interaction but also facili-
tates the assessment of the psychophysiological impact 
on individuals throughout the rehabilitation process. The 
estimation of patient perception regarding the use of the 
robot emerges as a valuable tool for initially evaluating 
how a specific technology is perceived as well as for stud-
ying the phenomena of adaptation to its use over time.

The correlation analysis presented in this study high-
lights the evolution of patients’ PP states through-
out rehabilitation sessions, offering insights into their 
adaptation to both the technology and the rehabilita-
tion process. In the initial stages of interacting with the 
technology, patients may display higher levels of excite-
ment when encountering something new and poten-
tially engaging. However, as indicated by the correlation 

Fig. 8 Percentage of time spent in a specific PP state estimated during the ten monitored rehabilitation sessions. The coloured bars and the error 
bars represent the mean values and the standard deviation computed for the eight enrolled patients

Table 2 Correlation coefficients between PP states and time

ρ p-value

Excited −0.73 0.01

Relaxed 0.70 0.02

Bored 0.13 0.71

Stressed 0.09 0.80
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analysis, this initial excitement tends to diminish in sub-
sequent sessions, suggesting an adaptation or growing 
familiarity with the technology.

This adaptation could stem from various factors, such 
as an increased confidence in using the technology, a 
deeper understanding of its benefits, or simply becoming 
accustomed to the routine of the rehabilitation sessions. 
Similarly, the positive correlation observed between the 
“Relaxed” state and session completion suggests that 
patients may develop a sense of comfort and ease with 
both the technology and the rehabilitation environment 
over time.

This adaptation to the technology may indicate an 
enhanced understanding of how to interact with it effec-
tively, resulting in a more relaxed and positive experience 
during sessions. In essence, the estimation of patient per-
ception not only provides a snapshot of their emotional 
states during rehabilitation but also offers a dynamic 
view of how these states evolve and adapt over time. 
This knowledge is essential for designing user-centered 
technologies and optimizing rehabilitation programs 
to enhance the overall experience and outcomes for 
patients.

Although this study provides insights into psycho-
physiological responses during robotic upper limb reha-
bilitation, some limitations have to be acknowledged. The 
small sample size and non-normally distributed charac-
teristics such as age, gender, and affected limb may limit 
the generalisability of the results and introduce potential 
sampling bias. A larger, more diverse sample is needed 
for future studies to improve robustness. In addition, 
this study focused exclusively on upper-limb robot-aided 
rehabilitation scenarios, and the obtained results may not 
be directly applicable or scalable to other types of reha-
bilitation robots. However, the proposed approach can 
indeed be applied to different systems. This study does 
not claim to provide generalizable results, but rather to 
provide evidence that certain adaptation phenomena 
may exist in patient-robot interaction. Furthermore, this 
method provides a way to quantify these phenomena, 
demonstrating its potential applicability in different reha-
bilitation contexts.

Conclusions
This paper introduces a psychophysiological estima-
tion approach based on a Fuzzy Logic inference model 
to evaluate patients’ perception of robots during robot-
aided rehabilitation sessions. Physiological parameters, 
including galvanic skin response, heart rate, and res-
piration rate, were monitored across ten out of forty 
robot-aided rehabilitation sessions. This data was used 
to construct an inference model capable of estimating 
the patients’ PP state. The percentage of time spent in 

a particular PP state was then calculated to succinctly 
represent the patient’s status within a single robot-aided 
rehabilitation session.

The results indicate that all patients had positive expe-
riences during their interaction with the robot. Initially, 
as they began their rehabilitation treatment, there was a 
sense of curiosity and interest in robot-aided rehabilita-
tion. However, as they spent more time with the robot, 
the initial excitement gradually decreased ( ρ = −0.73 
over time), giving way to a more “Relaxed” state ( ρ = 0.70 
over time). This transition from excitement to relaxation 
suggests a positive adaptation to the robot and the reha-
bilitation process. Therefore, it is necessary to design 
rehabilitation treatments that evolve over time, ensuring 
continuous patient participation and engagement. The 
psychophysiological estimation approach presented in 
this study effectively captured all the changes in patient 
perception throughout the rehabilitation protocol. This 
model demonstrated its capability to track the evolving 
emotional states of the patients, from their initial curi-
osity and excitement to a more relaxed and comfortable 
state as they engaged with the robot over time.

Future developments will focus on enriching the 
parameters considered in the monitoring and estimation 
module to provide a more detailed description of the user 
state. For example, the phasic component of the GSR 
can be added to provide relevant information about the 
cognitive workload induced in users. In addition, future 
work will focus on applying this methodology to differ-
ent robotic platforms and control strategies to assess 
their impact on patients over time. This will allow quan-
tification of how different technologies and interaction 
methods affect the psychophysiological state of patients 
throughout the rehabilitation process. The development 
of technologies that are increasingly person-centered 
and tailored to the needs of the individual patient, also in 
terms of the perception of the technology, could indeed 
contribute to improving the effectiveness of the rehabili-
tation treatment itself.

Appendix A Fuzzy rules
This appendix includes the fuzzy rules implemented in 
the method described in Section  2.2 to transform the 
physiological measurements Xr into the patient PP state. 

 1. If (SCL is “LOW”) then (Arousal is “LOW”)
 2. If (SCL is “MID”) then (Arousal is “MID”)
 3. If (SCL is “HIGH”) then (Arousal is “HIGH”)
 4. If (HR is “HIGH”) then (Arousal is “HIGH”)
 5. If (HR is “LOW”) then (Arousal is “LOW”)
 6. If (SCL is “HIGH”) and (HR is “LOW”) then 

(Arousal is “MID-HIGH”)
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 7. If (SCL is “MID”) and (HR is “MID”) then (Arousal 
is “MID”)

 8. If (RR is “HIGH”) then (Arousal is “MID-HIGH”)
 9. If (RR is “LOW”) then (Arousal is “MID-LOW”)
 10. If (SCL is “HIGH”) and (RR is “LOW”) then 

(Arousal is “MID-HIGH”)
 11. If (SCL is “LOW”) and (RR is “HIGH”) then 

(Arousal is “MID-HIGH”)
 12. If (SCL is “HIGH”) and (HR is “HIGH”) then 

(Valence is “LOW”)
 13. If (SCL is “LOW”) and (HR is “HIGH”) then 

(Valence is “HIGH”)
 14. If (SCL is “MID”) and (HR is “HIGH”) then 

(Valence is “MID-HIGH”)
 15. If (SCL is “MID”) and (HR is “LOW”) then (Valence 

is “MID-LOW”)
 16. If (SCL is “HIGH”) and (HR is “LOW”) then 

(Valence is “LOW”)
 17. If (SCL is “LOW”) and (HR is “LOW”) then 

(Arousal is “LOW”) (Valence is “LOW”)
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