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Abstract
Background Physical exercise is an important method for both the physical and mental health of the senior 
population. However, excessive exertion can lead to increased risks of falls, severe injuries, and diminished quality of 
life. Therefore, simple and effective methods for fatigue monitoring during exercise are highly desirable, particularly 
in community settings. The purpose of this study was to explore the possibility of real-time detection of exercise-
induced fatigue using surface Electromyogram (sEMG) features, including the kurtosis and skewness of the Probability 
Density Function (PDF) in the community settings to solve the issues of low sensitivity and high computational 
complexity of commonly used sEMG features.

Methods sEMG signals from six forearm muscles were recorded during hand grip tasks at 20% maximal voluntary 
contraction (MVC) task-to-failure contractions from 30 healthy community-dwelling elders at their respective 
community centers. PDF shape features of the sEMG, namely kurtosis and skewness, were computed from 25 s of 
non-fatigue stable phase and 25 s of fatigue data for comparison. Statistical tests were conducted to compare and 
test for the significance of these features. We further proposed a novel fatigue indicator, Temporal-Mean-Kurtosis 
(TMK) of channel-averaged kurtosis, to detect fatigue with relatively low computational complexity and adequate 
sensitivity in community settings. ANOVA and post-hoc analyses were performed to examine the performance of 
TMK.

Results Statistically significant differences were found between the non-fatigue period and the fatigue period for 
both kurtosis and skewness, with increasing values when approaching fatigue. TMK was shown to be sensitive in 
detecting fatigue with respect to time with lower computational complexity than the Sample Entropy.

Conclusion This study investigated PDF shape features of sEMG signals during a handgrip exercise to identify muscle 
fatigue in older adults in community experiments. Results revealed significant changes in kurtosis upon fatigue, 
indicating that PDF shape features were suitable convenient detectors of muscle fatigue in community experiments. 
The proposed indicator, TMK, showed potential sensitivity in tracking muscle fatigue over time in community-based 
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Introduction
The global aging population presents multifaceted chal-
lenges to healthcare systems, particularly concerning 
age-related health issues such as musculoskeletal injuries 
[1–3], which present the foremost and pressing strain on 
the societies’ healthcare infrastructure [3, 4]. It has been 
established that older adults need to perform physical 
exercises to maintain good physical and mental health 
[5–7]. However, it is essential to balance the amount and 
intensity of exercise to prevent exercise-induced injuries, 
which can lead to a decline in overall health and quality 
of life. Therefore, real-time detection of muscle fatigue 
during exercise is critical, especially in community set-
tings where most seniors engage in physical activity.

Recent research proposed a novel approach: the assess-
ment of perceived fatigability, which refers to the per-
ception of effort or strain during a standardized physical 
activity [8, 9]. This concept has recently emerged as a 
valuable tool for identifying older adults who are at risk 
of experiencing greater-than-expected functional decline. 
Different constructs of fatigability can be measured using 
different standardized scales and questionnaires. For 
instance, state fatigability is usually measured using the 
Borg scale, while trait fatigability is measured through 
the Pittsburgh Fatigability Scale (PFS) rating [8, 10].

While standardized measurements of different con-
structs of the perceived fatigability provide potential 
subjective indicators, there is also a need for quick and 
effective objective methods to detect exercise-induced 
fatigue using convenient wearable devices, particularly 
in community settings, so that both the cognitively per-
ceived fatigue and objective muscle fatigue could be 
incorporated together to provide concrete detection and 
warning of true fatigue in simple community exercises. 
Specifically, exercise-induced fatigue is characterized by 
a sensation of exhaustion, reduced muscle strength, and 
impaired coordination [11]. This decline of force impacts 
the functional abilities of older adults. Hence, real-time 
detection of muscle fatigue in community settings is vital 
for developing effective interventions and exercise pro-
grams tailored to the needs of older adults.

One promising approach for non-invasive detection of 
muscle fatigue involves the utilization of Surface Electro-
myography (sEMG), which is a technique used to record 
electrical signals generated by muscle fibers during acti-
vation [12, 13]. Features extracted from sEMG can be 
effective in reflecting changes in muscle fibers [14–16]. 
Traditional sEMG analyses focus on time-domain and 
frequency-domain features, such as the root mean square 

(RMS), which reflect changes in the strength or ampli-
tude of the signal [15]. However, these features may not 
be sensitive enough to capture the finer structural or sta-
tistical changes within the signal that relates to muscle 
fiber conduction velocity and motor unit (MU) synchro-
nization, especially when performing low-intensity exer-
cises in community settings [17].

To solve the effectiveness issue, recent studies have 
explored non-linear properties of sEMG, such as the 
Sample Entropy (SampEn) [18], to reflect non-station-
arities of signals during fatigue. However, one drawback 
of such non-linear properties is the high computational 
complexity.

Recently, to improve efficiency, the probability density 
function (PDF) of sEMG was investigated to detect mus-
cle fatigue and MU number variations among healthy 
adults or in simulations [14, 19]. Specifically, the shape 
of sEMG’s PDF has shown promise in reflecting the 
progression of fatigue, with observed deviations from 
the Gaussian distribution as fatigue sets in [14]. Shape 
descriptors of the PDF typically do not suffer from high 
computational complexity. Thus, they may also be effec-
tive indicators for the quick detection of muscle fatigue 
among older adults in communities with relatively low 
computational complexity. To be more specific, the skew-
ness and kurtosis of PDFs were commonly used simple 
indicators to capture deviations from the Gaussian distri-
bution. When the distribution of a PDF changes, skew-
ness and kurtosis are expected to change accordingly 
with significance [20], thus, these features may be sensi-
tive and easy-to-compute indicators of muscle fatigue 
for community experiments involving senior adults, a 
situation that has limited computational resources but 
demands adequate sensitivities.

Hence, this study aims to investigate the effectiveness 
and efficiency of using PDF shape features, specifically 
kurtosis and skewness, of sEMG signals as quick indica-
tors of muscle fatigue during simple handgrip exercises 
involving older adults. The use of kurtosis could poten-
tially provide a more convenient, low-complexity, and 
community-friendly method for real-time detection of 
muscle fatigue, enabling safer exercise programs for older 
adults. We also compared these EMG PDF features to 
conventional linear and non-linear features in fatigue 
detection. Based on that, we further proposed a tempo-
rally sensitive indicator with a low computational com-
plexity for near real-time muscle fatigue detection based 
on the kurtosis, namely the Temporal-Mean-Kurtosis 
(TMK).

settings with limited computational complexity, highlighting the promise of sEMG’s PDF features in detecting muscle 
fatigue among the elderly.

Keywords Muscle fatigue, Surface electromyogram, Probability density function, Kurtosis, Higher-order statistics
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Methods
Participants
In this study, we recruited community-dwelling older 
adults aged 60 years and above from different commu-
nities in Chengdu, southwest China, with diverse socio-
economic conditions. To ensure the representation of 
diverse educational backgrounds and socioeconomic 
contexts, targeted recruitment announcements for older 
adults were published in four distinct communities. Eli-
gibility criteria for enrollment comprised the ability to 
walk independently and a verified absence of severe 
muscular problems such as Parkinson’s disease, sarcope-
nia, or stroke [21]. Conversely, exclusion criteria were as 
follows: [1] severe osteoarthritis; [2] unregulated diabe-
tes; [3] unstable hypertension exceeding 150/90 mmHg; 
[4] documented cognitive impairments; [5] evidence 
of chronic organ failure within the last five years; and 
[6] any reported history of cancer. The participant must 
satisfy all the inclusion criteria and none of the exclu-
sion criteria simultaneously to take part in the experi-
ment. The requirement that the participant has to be 
able to walk without any walking aids is one of the inclu-
sion criteria to ensure that the participant has adequate 
exercise ability and does not suffer from severe injuries 
or muscular diseases like sarcopenia, according to the 
Asian Working Group for Sarcopenia in 2019 Standards 
[22]. In this way, we can ensure that participants who 
finished the experiment were healthy and reliable senior 
adults (that they can at least maintain adequate exercise 
ability and feel muscle fatigue subjectively without large 
risks of injury). Following these criteria, a final cohort 
of 34 participants (16 men and 18 women) successfully 
completed all experimental protocols. The age of these 34 
participants was 71.7 ± 6.2 years old. All participants were 
granted their informed written consent following a thor-
ough explanation of the study procedures and attendant 
risks. This research adhered strictly to the tenets out-
lined in the Declaration of Helsinki and received ethical 
approval from the Institutional Review Board of the West 
China Hospital of Sichuan University under the reference 
number WCHSCU_2023_317.

Experimental protocol
Before the formal fatigue test, the forearm skin of each 
participant was gently shaved and then sanitized with 
an alcohol pad in order to establish optimal conditions 
for the recording of sEMG signals. On the participant’s 
upper limb, six pairs of Ag/AgCl electrodes (Kendall 
H124SG, CardinalHealth Inc., Dublin, Ohio, USA) were 
affixed to the muscle bellies of the brachioradialis (BRD), 
flexor carpi radialis (FCR), flexor digitorum superficialis 
(FDS), flexor carpi ulnaris (FCU), extensor carpi ulna-
ris (ECU), and extensor digitorum (ED), as shown in 
Fig. 1(A). The exact placement of electrode pairs referred 

to the guidance according to the Atlas of Muscle Inner-
vation Zone and Chap.  17 of Cram’s Introduction to 
Surface Electromyography [23, 24]. Specifically, we first 
determine the anatomical landmark frames (ALF) of each 
targeted muscle and then place the electrodes upon opti-
mal electrode sites with respect to the muscle anatomy 
according to guidelines stated in Cram’s Introduction to 
Surface Electromyography (for FCR, FDS, FCU, and ED) 
[24] and Atlas of Muscle Innervation Zone (for BRD and 
ECU) [23]. The recording of signals was facilitated by a 
wireless system (Ultium EMG, Noraxon Inc., Scottsdale, 
USA) at a sampling rate of 2000  Hz and a gain setting 
of 1000. An example of recorded signals is exhibited in 
Fig. 1(C).

During the experiment session, the participants were 
seated naturally on a chair. They were then asked to place 
their arms naturally at the sides with the grip dynamom-
eter held in the right hand, facing a computer screen to 
receive visual feedback. The main reasons for choosing 
this position instead of raising the elbow at 90º, as usual, 
are: [1] The Xiangshan handheld grip dynamometer 
(EH101 Grip Dynamometer, Xiangshan Inc., China) we 
were using is a small and convenient dynamometer that 
measures grip forces by pulling up a handle, so it mea-
sures more precisely when pulling vertically instead of 
pulling with the elbow twisted at 90º with the arms at 
sides. Indeed, this position we used in the experiment 
was the recommended position by the device manufac-
turer according to the operation manual, and [2] senior 
adults found it hard to maintain their elbow at 90º while 
performing handgrip tasks, especially when measuring 
MVCs continuously. The experimental protocol com-
prised two distinct parts, as presented in Fig.  1(B) and 
Fig. 1(C).

In part one, the participants were instructed to posi-
tion their arms naturally at the sides and perform MVC 
trails by gripping a handheld dynamometer. The maxi-
mum grip force that the participant could sustain steadily 
for three to five seconds was recorded. Each participant 
repeated three MVC contractions with sufficient inter-
trial resting intervals. The average force value obtained 
from three trials was designated as the MVC reference 
force value for the participant.

Next, in part two, after a short familiarization period, 
participants perform a hand grip exercise at a force level 
equivalent to 20% of their MVC reference force until task 
failure. Specifically, after the participant’s oral report 
of perceived fatigue, we then started to check the force 
reader on the grip dynamometer. If the force output 
was confirmed to be declined with the participant hav-
ing difficulty maintaining the required force level, we 
considered the participant to be encountering fatigue 
for targeted muscles. Then, the participant was asked to 
try their best to maintain the grip force for an extra 25 s. 
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The sEMG data recorded during this period was consid-
ered fatigue data. The target force level was visually pre-
sented on the computer screen to guide the participants 
throughout the session. Typically, the entire experimental 
procedure did not exceed 15 min, a length well-tolerated 
by older adults and suitable for effective screening in 
community settings or at home.

Data processing
Data preprocessing
An sEMG expert inspected the acquired data to deter-
mine if there were abnormal channels with excessive 
noise or other artifacts to be addressed. Then, sEMG 
signals that met the standard without obvious problems 
were digitally filtered by notch filters of integral multiples 
of 50 Hz followed by a bandpass third-order Butterworth 
filter between 10 Hz and 500 Hz. In the end, data from 
four participants were excluded due to the absence of 
fatigue or problems in signal recording, and data from 30 
participants were retained.

Feature extraction
The average duration of the recorded data is 337 s, with 
a standard deviation of approximately 80  s. The total 
duration did not affect the analysis methods too much 
because we selected the middle stable 25  s in the non-
fatigue stage and the 25  s at the end of processed data, 
which is considered fatigue. So that the statistical tests 
can be carried out with as much power as possible with 
less variability in the temporal dimension. The sample 
size used for the statistical tests is determined by 20 win-
dows of sEMG data for each phase (group) * 30 popula-
tions, resulting in a total number of 600 samples per 
group.

Specifically, to extract skewness and kurtosis from 
sEMG’s PDF, we selected equal-length data from the 
non-fatigue and 25-second fatigue periods to perform 
statistical analysis. Specifically, five-second window seg-
ments with a one-second step size were applied to the 
pre-processed sEMG data. Then, 20 windows in the mid-
dle of the stable non-fatigue stage (typically between 50 s 
and 100 s on the timeline) and 20 windows at the end of 

Fig. 1 The experimental protocol. (A). Illustration of the placement of six pairs of electrodes. (B). Photo of how the hand-grip fatigue experiments were 
conducted in communities. (C). Experimental procedure and the recorded sEMG signals from the two sessions
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the fatigue stage were extracted for group-wise statistical 
comparison tests.

For the calculation of kurtosis and skewness, after 
data preprocessing, empirical PDFs of the stable stage 
data and the fatigue stage data for each participant were 
estimated using the KernelDensity function in the scikit-
learn package in Python. Then, sample kurtosis and sam-
ple skewness were computed according to Eqs.  (1) and 
(2), respectively:
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where n  is the total number of sampling points used to 
estimate the PDF (1000 in this study), Xi  represents the 
i-th PDF value, −

X  indicates the sample average of PDF 
values, and S  is the sample standard deviation of all PDF 
values.

In addition to the above PDF shape features, for com-
parison purposes, root mean square (RMS) was also 
extracted according to Eq. (3) as a representation of time-
domain features:

 

RMS =

√√√√ 1

m

m∑

j=1

Y 2
i  (3)

where m  is the total number of time points, Yi  repre-
sents the i-th amplitude value.

Additionally, we calculated the change of the mean 
power frequency (MPF) to observe the actual onset of 
fatigue throughout the isometric contraction [15]. It is 
believed that MPF is a more reliable indicator of muscle 
fatigue in isometric contractions than time-domain fea-
tures such as the RMS [15]. To confirm changes in MPF, 
we first determined and recorded the baseline MPF 
value for each participant through sEMG signals from 
the respective MVC trials. Then, the MPF values of the 
sEMG data from the non-fatigue and the fatigue protocol 
were calculated and normalized with respect to the base-
line value for each participant. Following widely applied 
criteria in fatigue literature [15, 25], if a participant’s 
MPF values from the fatigue protocol never decreased 
from the baseline, the participant possibly did not expe-
rience real muscle fatigue [14, 15, 25]. To extract MPF, 
a Fast Fourier Transform (FFT) with five-second non-
overlapping temporal windows was first applied on non-
segmented sEMG signals to obtain a discrete series of 

frequency spectrum amplitude, and then the power spec-
tral density (PSD) was calculated using the square of fre-
quency spectrum amplitude. Lastly, MPF was computed 
as the mean of all PSD [26].

Besides the above features from the time-domain, 
frequency-domain, and PDF, several other non-linear 
features were shown as effective in fatigue detections in 
recent studies, including the sample entropy (SampEn) 
and the Fractal Dimension [18, 27]. These non-linear fea-
tures typically do not require stationarity assumptions of 
the signal [28] and are potentially effective in detecting 
underlying changing patterns of the sEMG considering 
muscle fatigue [17]. However, though effective, the com-
putational complexity of non-linear features is typically 
high, making it difficult in community real-time detec-
tion experiments. Hence, we also took the SampEn as 
an example to compare the statistical significance and 
the computational complexity with PDF features for fast 
detection of fatigue in senior adults.

Outlier detections
After the initial feature extraction, outlier values were 
removed based on the following procedure. First, for 
non-fatigue data, outliers were excluded according to 
Grubbs’ test since the PDF during non-fatigue periods 
still follows the Gaussian distribution [29]. For each of 
the feature values, it is considered as an outlier if it devi-
ates more than Gα , n  standard deviations apart from the 
mean, where Gα , n  represents the numerical Grubbs’ 
threshold [30], determined by the significance level 
α = 0.05 and feature sample size. In the current study, 
the Gα , nvalues were set to 2.64 according to Grubbs’ 
threshold Table (30). On the other hand, for fatigue 
stages, Grubb’s rule cannot be applied because the fatigue 
EMG’s PDF is no longer Gaussian by assumption [29, 31]. 
Hence, we utilized the interquartile range (IQR) method, 
which does not assume prior distributions of the sample, 
for outlier detections [31]. Specifically, an observation 
from the fatigue data was considered a potential outlier if 
it fell below (Q1–2 * IQR) or above (Q3 + 2 * IQR), where 
Q1 represents the first quartile and Q3 represents the 
third quartile. Lastly, a potential outlier was considered 
to be a true outlier and excluded for further analysis if it 
occurred less than twice among the previous and next 
two windows.

Statistical analysis of PDF shape features of sEMG in 
discriminating muscle fatigue
To conduct proper statistical tests for comparisons 
between the non-fatigue stage and the fatigue data for 
all features, since one of the key assumptions of the cur-
rent study was unequal variances and deviations from 
the Gaussian distribution for data from the fatigue EMG, 
the Levene’s test [32] for unequal variances (p < 0.01) and 
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Shapiro-Wilk test [33] for Gaussianity (p < 0.05) were first 
performed to confirm this assumption. As such, para-
metric tests were not applicable [34]. Hence, the non-
parametric Mann-Whitney U test [34] was performed to 
test if statistically significant differences were presented 
between the 25 s of the non-fatigue data and the 25 s of 
fatigue data for each of the extracted features (kurto-
sis, skewness, RMS, MPF, and SampEn) for each sEMG 
channel. The significance and effectiveness of each fea-
ture were then compared to each other within each chan-
nel. Additionally, the mean-difference effect sizes (ES) 
and the corresponding 95% confidence intervals (CI) of 
the ES for each test statistic were calculated along with 
p-values.

Since multiple hypothesis tests were done on the same 
indicator across different channels to control the false 
discovery rate (FDR), the the Benjamini & Hochberg 
method [35] was applied to each family of test statis-
tics, as it’s the preferable approach for controlling Type-
I errors in multiple testing because it not only reduces 
false positives, but also minimizes false negatives [36]. All 
statistical tests were performed at a significance level of 
0.05.

Statistical analysis of temporal-mean-kurtosis as an 
indicator for muscle fatigue in community experiments
To better monitor and detect exercise-induced fatigue 
during community experiments with sufficient low com-
plexity, a sensitive real-time indicator of fatigue based on 
the sEMG data was needed. Hence, we proposed to cal-
culate a moving average version of the kurtosis of sEMG’s 
PDF throughout the contraction experiments, namely 
the Temporal-Mean-Kurtosis (TMK), as a quantitative 
assessment for entering muscle fatigue. First, kurtosis 
was calculated using the same methodology as the previ-
ous section and then averaged over all six channels. Next, 
a non-overlapping 25-second sliding window was applied 
to the channel-averaged kurtosis curve. Lastly, the area 
under the kurtosis curve (indicated as the red line in 
Fig. 2) was calculated for each window as the TMK.

ANOVA statistical test was then used to examine dif-
ferences among temporal levels. In the current study, 
each adjacent 25-second window is considered as one 
level in the ANOVA test. Moreover, to perform pairwise 
comparison among temporal levels and to determine 
which specific level differences were statistically signifi-
cant after an overall significant difference, the Tukey’s 
Honestly Significant Difference (HSD) test was utilized as 
a post-hoc analysis following ANOVA [37].

Fig. 2 Channel-averaged PDF kurtosis trend over time. The x-axis represents time in seconds. The y-axis represents the average PDF kurtosis value of all 
six channels of sEMG. The red line indicates the average of all participants, while the shaded grey area indicates ± one standard deviation
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All computations were performed using Python ver-
sion 3.11, Scikit-learn package version 1.4.1, NumPy 
package version 1.26.0, SciPy package version 1.12.0, 
Pandas package version 2.1.0, and Seaborn package ver-
sion 0.13.2. All statistical tests were performed at a sig-
nificance level of 0.05. All analyses were performed using 
R version 4.3.3 in RStudio software (Posit Co., United 
States).

Results
Statistical results of sEMG’s PDF shape features in 
discriminating muscle fatigue
Descriptive statistics of the indicators
Descriptive statistics of all features were summarized in 
Table  1. As shown below, the kurtosis exhibited a sig-
nificant increase when encountering fatigue, indicating a 
deviation from the Gaussian distribution of the sEMG’s 
PDF. MPF was shown to be decreased as expected, but 
the extent of change is not as significant as the kurtosis.

Furthermore, referring to Sect.  2.4, using the Mann-
Whitney U-test for all six channels, the resultant violin 
plots of kurtosis and skewness in distinguishing muscle 
fatigue are shown in Figs.  3 and 4, respectively. Here, 
Fig.  3 presents the differences in kurtosis distributions 
between the non-fatigue stage and the fatigue stage. All 

channels exhibited statistically significant differences in 
average kurtosis at the significance level of 0.05. Chan-
nels one and two presented the most obvious differences 
with the p-value smaller than 0.01. From the violin plot, it 
was also obvious that the kurtosis had higher values and 
larger ranges in general during fatigue compared to non-
fatigue periods. This result showed that the kurtosis of 
PDF of sEMG was potentially a sensitive detector of mus-
cle fatigue with our experimental protocol in elders, as it 
tended to increase when approaching fatigue, reflecting 
that the PDF was deviating from the Gaussian distribu-
tion with more extreme values in the sample.

Figure 4 shows the violin plots of differences in skew-
ness distributions between the non-fatigue and the 
fatigue stage. Channel one, two, and six again obtained 
the most significant differences, with the p-value smaller 
than 0.02. Similar to kurtosis, skewness also tended to 
increase with fatigue, implying that the PDF was devi-
ating from Gaussian with some right skews. But when 
compared to the extent to which kurtosis increased, 
skewness did not exhibit a much larger range and more 
extreme values as kurtosis showed. Combining together, 
the results showed that these two PDF shape features, 
especially the kurtosis, were sensitive in detecting exer-
cise-induced fatigue in older adults. As well, the observed 

Table 1 Summarization table of descriptive statistics of the results averaged over all six channels
Kurtosis Skewness Normalized RMS Normalized MPF Sample Entropy

Non-fatigue 3.107* (±0.595) 1.311* (±0.127) 0.436 (±0.174) 0.970* (±0.077) 1.215* (±0.070)
Fatigue 3.667* (±0.664) 1.467* (±0.225) 0.464 (±0.132) 0.906* (±0.078) 1.135* (±0.078)
Descriptive results are presented in the format of medians (± 1 IQR). The * indicates features (averaged over all six channels) that are statistically significant (p < 0.05) 
using the Mann-Whitney U test

Fig. 3 Violin plots of within channel comparison of sEMG’s PDF kurtosis between the non-fatigue versus fatigue stage
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deviations from Gaussian distribution implied the pres-
ence of abnormal muscle activation or changes in MU 
recruitment/synchronization strategies during muscle 
fatigue.

Mann whitney U test results for group comparisons
Moreover, for comparison, differences in RMS, MPF, and 
SampEn between the non-fatigue and the fatigue period 
were also tested. As for RMS, the differences were not as 
obvious as PDF shape features in detecting muscle fatigue 
with our experimental protocol. Only channels two, 
three, and four showed statistically significant differences 
with a p-value smaller than 0.05 (but greater than 0.02 for 
all channels). The distinctions of RMS between the non-
fatigue and fatigue stages were also not as clear and con-
sistent as those two shape features of the sEMG PDF. This 
could potentially be due to difficulties of linear features in 
capturing subtle changes of signals’ amplitude variations 
during low-effort exercises. MPF suffered from a similar 
situation. Though it was shown to be decreased, the sig-
nificance was concerning. On the other hand, SampEn, 
as a representation of non-linear features, exhibited great 
significance between groups. The overall p-value com-
parison results are summarized in Table 2, along with the 

mean-difference effect sizes and corresponding 95% con-
fidence intervals for the effect size.

FDR-adjusted p-value results
Last but not least, FDR-adjusted p-values are presented 
in Table  3. Results further showed that non-linear fea-
tures generally exhibited statistical significance even after 
FDR adjustments, but RMS and MPF lost significance 
after controlling the FDR.

Performance of TMK as a temporal indicator for muscle 
fatigue
Figure  1 shows the development of averaged kurtosis 
over all six channels throughout the fatigue experiment 
from 50 s to 300 s. The x-axis represents the time, and the 
y-axis represents the averaged kurtosis values. The red 
line indicates the overall average of all 30 participants, 
while the shaded grey area indicates ±  one standard 
deviation. It could be observed that the averaged kurtosis 
exhibited an increasing trend.

ANOVA results of the TMK
Furthermore, referring to Sect.  2.5, Fig.  5 depicts the 
TMK results of the averaged kurtosis curve (red line of 
Fig. 2) over the discretized 25-second temporal window. 

Fig. 4 Violin plots of within channel comparison of sEMG’s PDF skewness between the non-fatigue versus fatigue stage
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As shown, TMK results further confirmed the increasing 
trend in the variations of channel averaged kurtosis when 
approaching muscle fatigue, with the values starting from 
250  s being significantly larger than those before 125  s. 
Indeed, ANOVA analysis carried out a p-value of 0.0076, 
which is obviously less than the significance level of 0.05, 
indicating that statistically significant differences existed 
among different time levels.

Tukey’s HSD post-hoc analysis results of TMK among different 
time levels
As shown by the bars in Fig.  5, Tukey’s HSD post-hoc 
analysis further showed that TMK values of the first two 
temporal levels, i.e., 75 to 100 and 100 to 125 s, were sig-
nificantly less than that of the last time level when experi-
encing fatigue, i.e., 275 s to 300 s. Among all time levels, 
100 to 125 s exhibited the greatest differences compared 
to the fatigue data (275 to 300 s), with an obvious increas-
ing trend in TMK values, showing that the averaged kur-
tosis was experiencing an uprising when approaching 
fatigue.

Discussion
PDF shape features for detecting muscle fatigue
Significance of statistical test results
The primary aim of this preliminary study was to exam-
ine the effectiveness of using PDF shape features of 

sEMG signals as sensitive and convenient fatigue detec-
tors during hand grip exercises for older adults using sus-
tained low-effort contractions (20% MVC) in community 
settings. Statistical results showed that kurtosis exhibited 
the most significant differences between the non-fatigue 
stable stage and the task failure stage, reflecting a sig-
nificant deviation from the Gaussian distribution, which 
potentially relates to MU activities regarding fatigue and 
aging [14, 16, 38–41]. In addition, ANOVA and post-hoc 
results showed that TMK is sensitive in detecting exer-
cise-induced fatigue in community experiments.

The results together implied that, with the progres-
sion of muscle fatigue, the irregularity and complexity of 
muscle activity also varied. These results were consistent 
with some previous studies in PDF shape features used to 
detect various kinds of fatigue and further cross-validated 
that the PDF of sEMG signals tend to have higher peaks 
than Gaussian distribution when entering the fatigue 
stage [14, 16, 39, 41], even for older adults. In contrast, 
RMS had less significance in capturing subtle structural 
changes in sEMG caused by exercise-induced fatigue 
in low contraction levels among older adults. This is 
because linear features mainly detect variations in ampli-
tudes or frequency spectrums, which do not change as 
significantly as the statistical properties of sEMG, espe-
cially during fatigue in low contraction levels. Also, it is 
hard for linear features to provide many insights into the 

Table 2 Summarization of p-value results
Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6

Kurtosis *p = 0.0095
ES = -0.746
CI = [-0.854, -0.639]

*p = 0.0078
ES = -0.826
CI = [-0.967, -0.686]

*p = 0.0292
ES = -0.458
CI = [-0.543, -0.374]

*p = 0.0335
ES = -0.401
CI = [-0.475, -0.328]

*p = 0.0201
ES = -0.465
CI = [-0.559, -0.370]

*p = 0.0235
ES = -0.465
CI = [-0.762, -0.168]

Skewness *p = 0.0098
ES = -0.201
CI = [-0.231, -0.172]

*p = 0.0141
ES = -0.161
CI = [-0.213, -0.108]

*p = 0.0393
ES = -0.153
CI = [-0.179, -0.127]

*p = 0.0446
ES = -0.143
CI = [-0.203, -0.083]

*p = 0.0296
ES = -0.137
CI = [-0.164, -0.101]

*p = 0.0283
ES = -0.123
CI = [-0.146, -0.0998]

RMS p = 0.0648
ES = -0.198
CI = [-0.280, -0.116]

*p = 0.0428
ES = -0.525
CI = [-1.048, -0.073]

p = 0.0503
ES = -0.339
CI = [-0.574, -0.104]

*p = 0.0435
ES = -0.369
CI = [-0.662, -0.077]

p = 0.0627
ES = -0.338
CI = [-0.535, -0.114]

p = 0.125
ES = -0.070
CI = [-0.290, -0.151]

MPF p = 0.0704
ES = 0.026
CI = [0.010, 0.0504]

p = 0.0723
ES = 0.021
CI = [0.001, 0.041]

*p = 0.0402
ES = 0.052
CI = [-0.012, 0.116]

*p = 0.0340
ES = 0.092
CI = [0.0314, 0.153]

*p = 0.0420
ES = 0.032
CI = [-0.015, 0.0792]

p = 0.116
ES = 0.012
CI = [-0.011, 0.035]

Sample Entropy *p = 0.0028
ES = 0.119
CI = [0.107, 0.131]

*p = 0.0129
ES = 0.095
CI = [0.079, 0.110]

*p = 0.0177
ES = 0.093
CI = [0.079, 0.107]

*p = 0.0367
ES = 0.041
CI = [0.030, 0.052]

*p = 0.0204
ES = 0.053
CI = [0.042, -0.065]

*p = 0.0084
ES = 0.077
CI = [0.062, 0.091]

*p represents p-value that is smaller than the significance level, i.e., 0.05, and thus exhibits statistically significant differences. ES = effect sizes. CI = confidence 
intervals for effect sizes.

Table 3 FDR adjusted p-value results
Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6

Kurtosis *p = 0.0285 *p = 0.0285 *p = 0.0335 *p = 0.0335 *p = 0.0335 *p = 0.0335
Skewness *p = 0.0285 *p = 0.0285 *p = 0.0335 *p = 0.0335 *p = 0.0335 *p = 0.0335
RMS p = 0.0776 p = 0.0776 p = 0.0776 p = 0.0776 p = 0.0776 p = 0.1250
MPF p = 0.0723 p = 0.0723 p = 0.0723 p = 0.0723 p = 0.0723 p = 0.0723
Sample Entropy *p = 0.0168 *p = 0.0245 *p = 0.0245 *p = 0.0367 *p = 0.0245 *p = 0.0245
*p represents adjusted p-value that is smaller than the significance level, i.e., 0.05, and thus exhibits statistically significant differences after FDR corrections
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mechanism behind muscle fatigue in elders, as they can-
not reflect statistical or in-depth structural changes [17]. 
As a result, the increase of TMK over time revealed that 
the PDF of sEMG signals occurred to have more extreme 
values that departed from the Gaussian distribution, rep-
resenting the presence of abnormal variations regarding 
fatigue-related and age-related MU firing behaviors [17, 
39], discussed further in Sect. 4.2.

Comparisons of the computational complexity
To facilitate a near real-time detection approach, the 
computational complexity of estimating the indicators is 
crucial to consider.

As for our approach involving the kurtosis indicator, 
the calculation process for a signal of length N  meanly 
involves:

1) The fourth central moment calculation, which has a 
complexity of O (N);

2) Calculations of the standard deviation, which also 
results in a complexity of O (N);

3) Carrying out the kurtosis using the fourth central 
moment and the standard deviation, which involves 
a constant-time operation, resulting in a complexity 
of O (1) .

Hence, the overall complexity of the calculation involv-
ing the kurtosis of a signal of length N  is dominated by 
O (N).

In comparison, the sample entropy method [18] has a 
significantly higher computational complexity. To cal-
culate the sample entropy for a signal of length N  with 
embedded dimension of m , we need to go through pro-
cesses of:

Fig. 5 TMK of channel-averaged kurtosis of every 25 s and Tukey’s test results. The x-axis represents time in seconds. The y-axis represents the TMK values. 
Dots represent the TMK of that 25 s time period. Bars represent comparison intervals from the Tukey’s test. Values outside the bar are considered signifi-
cantly different. As shown, TMK from 100 to 125 s (blue bar) exhibited the most significant differences compared to the value from 275 to 300 s (red bar)
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1) Subsequence generation, which results a complexity 
of O (N);

2) Distance calculation, which involves 
calculating the distance of each subsequence 
to all others, resulting in a total complexity of 
O ((N −m + 1 )∗(N −m )∗m) ;

3) Probability calculation, which involves in a 
complexity of O (1) ;

4) Carrying out the sample entropy using the 
probability, which involves a constant-time 
operation, resulting in a complexity of O (1) .

Therefore, the overall complexity of calculat-
ing a sample entropy indicator of a signal of length 
N  and embedded dimension m  is dominated by 
O ((N −m + 1 )∗(N −m )∗m). When N � m , this 
can be further simplified to O

(
N2m

)
. Apparently, this 

is much higher than the computational complexity of 
O (N) for the kurtosis indicator.

Potential real-world applications
The near real-time detection of muscle fatigue using 
PDF features of sEMG signals holds significant promise 
for practical applications in community settings. With 
the advent of wearable technology and wireless systems, 
the proposed method could be integrated into portable 
devices designed for older adults. Such devices could 
continuously monitor sEMG signals during exercise, 
analyze them using PDF features like the TMK, and alert 
users or caregivers when signs of fatigue are detected. For 
instance, a wearable sensor on the forearm could trans-
mit sEMG data to a smartphone app, which would dis-
play TMK values in real-time. If the TMK value indicates 
fatigue, the app could advise taking a break or reducing 
exercise intensity. This approach would help prevent 
exercise-induced injuries and enable older adults to 
maintain safe exercise routines, thereby improving their 
health and quality of life. The method’s simplicity and 
low computational complexity make it ideal for integra-
tion into community fitness programs and home exercise 
equipment, facilitating widespread adoption.

Interpretations, mechanisms, and implications
Mechanisms behind the neuromuscular junction system and 
motor units
Indeed, to better detect fatigue in community experi-
ments and study the mechanisms behind muscle fatigue 
involving the neuron-muscular system, capturing the 
variations of MU synchronizations or recruitments is 
very crucial since MU is one of the fundamental group-
ing units that is responsible for the muscle’s ability for 
accurate and refined motions [11]. A motor unit (MU) 
comprises a single motoneuron and the ensemble of 
muscle fibers it innervates. When a motion is initiated, 

the efferent neural drive activates the motoneuron, trig-
gering the generation of a series of motor unit action 
potentials (MUAPs). These MUAPs are then conducted 
to the neuromuscular junction (NMJ) and subsequently 
transmitted to the muscle fibers, initiating muscle con-
traction [42, 43].

To thoroughly examine the complex interactions within 
this system and the resulting complexity of sEMG sig-
nals, non-linear methods are particularly advantageous. 
At both the probabilistic and information density levels, 
these methods can capture the intricate patterns and 
distributions of MUAPs, as well as any abnormal activi-
ties, through probabilistic or density representations at 
the micro level [17, 27, 44]. Some other studies further 
suggested that the uplifting in MU synchronization when 
approaching fatigue might serve as a method to com-
pensate for motoneuron excitability and concentrated 
MU recruitment after exercise-induced fatigue [4,36]. 
The decreasing trend of the sample entropy observed in 
other research is also in line with the interpretation that 
MU synchronization is more concentrated during fatigue 
[12, 16, 27], potentially caused by different distributions 
of type I and type II MUs from non-fatigue to fatigue in 
older adults [14, 45, 46].

Regarding the results from this study and related inter-
pretations, the increase in kurtosis and the changes in 
the skewness of the sEMG’s PDF are indicative of more 
extreme values departing from the Gaussian distribu-
tion. This is likely related to abnormal variations in MU 
firing behaviors due to aging and fatigue. Specifically, 
the increase in kurtosis suggests a concentration of MU 
recruitment, which aligns with the observed increase in 
MU synchronization during fatigue mentioned above. 
The changes in skewness may indicate a shift in MU type 
distributions from non-fatigue to fatigue states in older 
adults [14].

The effects and potential interpretations of MU aging
In older adults, there is a reduction and increased vari-
ability in synaptic inputs that activate motor neurons, a 
decline in the number of motor units combined with an 
enlargement in their size, decreased stability of neuro-
muscular junctions, lower and more variable discharge 
rates of MUAPs [47]. Additionally, Aged MUs exhibit dis-
tinct type I and type II MU distributions, leading to more 
sophisticated patterns of muscle fatigue [14]. Statistically, 
these structural changes affect the trends in the shape 
and distance of PDFs derived from sEMG signals [14], 
which can be generalized to effectively study the changes 
in MU synchronization and recruitment during fatigue 
among older adults.
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Generalization to regular Exercise monitoring
Speaking of generalization, the findings of this study can 
be generalized to the monitoring of muscle fatigue during 
exercises among senior adults who perform low-effort 
exercises regularly in communities. This subgroup of 
senior adults particularly demands simple and effective 
means to detect potential exercise-induced fatigue dur-
ing their regular exercises to avoid severe injuries. The 
use of sEMG signal analysis, especially focusing on the 
shape features of the PDF, can provide a convenient and 
sensitive method for detecting the onset of fatigue using 
wireless systems. This is crucial for preventing the impact 
of functional abilities and reduction in quality of life for 
this subgroup of senior adults in community settings.

Limitations and future directions
Although the kurtosis and skewness of PDF of sEMG 
signals revealed significant differences between the 
non-fatigue and the fatigue stage in our community 
experiments, several limitations of this study should be 
addressed.

Firstly, the effectiveness of PDF shape features using 
higher order statistics only occurred and was tested with 
a sustained low contraction in our setup. The sensitiv-
ity of higher order statistics of PDF was still not clear for 
more complicated exercises that are close to daily sports, 
which involve excessively large areas of different muscles 
and underlying MUs [38, 48, 49]. For such activities, 
sEMG signals can vary drastically with high complex-
ity, bringing further challenges in sensitively detecting 
fatigue of each muscle.

Additionally, for fast screening purposes and cur-
rent limitations to our dynamometer devices, mechani-
cal properties were not simultaneously performed with 
sEMG experiments [50]. Though time-consuming, actual 
power and mechanical properties using mechanomyog-
raphy (MMG) can provide direct information about 
muscle force variations and potential insights into muscle 
activation properties [50]. Importantly, we can further 
conduct sensitivity comparison analyses involving PDF 
shape features compared to other traditional sEMG fea-
tures by performing a correlation test between the actual 
power and such features [25]. Hence, in future stud-
ies, sensitive sEMG features combined with mechanical 
features are of great interest in detecting muscle fatigue 
through more complicated exercises among older adults 
in daily community settings.

Moreover, the participants of this study were recruited 
only in a specific city in China, lacking generalizations 
worldwide. Thus, larger datasets involving more com-
prehensive population inclusion are necessary for future 
experiments.

Lastly, besides limitations regarding objective mea-
surements, the absence of directly measuring perceived 

fatigability for senior adults [8] instead of oral reports and 
sEMG features represents a gap that could be addressed 
in future experiments since the lack of fatigability mea-
surements can introduce bias in perceived reports of 
fatigability. Although previous research indicated that 
fatigability can also be measured by quantifying declines 
in several aspects of muscular performance or declines 
in accuracy over time on continuous tasks [51], such as 
the ARV of sEMG in performance tasks [52], the Borg 
scale is more beneficial in providing a standardized and 
validated method for assessing the state fatigability. Plus, 
the PFS can help with standardized measurements of 
the trait fatigability, potentially enhancing the predictive 
power of the fatigability and sports performance assess-
ment combined together.

A final note on future directions is regarding Machine 
Learning methods. From statistical analyses on non-lin-
ear indicators, useful features can then be beneficial in 
machine learning and deep learning algorithms to clas-
sify or even forecast muscle fatigue with high accuracy 
and sensitivity [38, 53]. But, for such models, datasets 
are extremely crucial in order for the machines to learn 
properly and effectively. Hence, augmenting the dataset is 
also an important future work to do.

Conclusion
This study has demonstrated the feasibility of using the 
kurtosis and skewness of the Probability Density Func-
tion (PDF) of sEMG signals to detect exercise-induced 
muscle fatigue in community-dwelling older adults. The 
findings show that the Temporal Mean Kurtosis (TMK) 
is a sensitive indicator of muscle fatigue, offering a prac-
tical and community-friendly method for fatigue moni-
toring during exercise. The results suggest that the use 
of PDF shape features can provide a simple yet effective 
approach to detecting muscle fatigue in near real-time, 
which is particularly relevant for community settings.

Looking ahead, the development of wireless systems 
that incorporate these PDF features could facilitate the 
broader implementation of fatigue monitoring tools in 
daily exercise routines. Such systems would enable older 
adults to engage in safe and effective physical activity, 
thereby reducing the risk of exercise-induced injuries 
and improving overall health and well-being. Consider-
ing the growing global aging population and the increas-
ing demand for community-based exercise programs, 
the findings of this study highlight the importance of 
developing accessible and efficient methods for moni-
toring muscle fatigue to prevent falls and injuries among 
older adults, ultimately enhancing their quality of life and 
independence.
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