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Abstract
Background The ability to relearn a lost skill is critical to motor recovery after a stroke. Previous studies indicate that 
stroke typically affects the processes underlying motor control and execution but not the learning of those skills. 
However, these studies could be confounded by the presence of significant motor impairments. Furthermore, prior 
research involving the upper extremity indicates that stroke survivors have an advantage in offline motor learning 
when compared with controls. However, this has not been examined using motor acuity tasks (i.e., tasks focusing on 
the quality of executed actions) that have direct functional relevance to rehabilitation.

Objective Investigate how stroke affects leg motor skill learning during walking in stroke survivors.

Methods Twenty-five participants (10 stroke; 15 controls) were recruited for this prospective, case-control study. 
Participants learned a novel foot-trajectory tracking task on two consecutive days while walking on a treadmill. The 
task necessitated greater hip and knee flexion during the swing phase of the gait. Online learning was measured 
by comparing tracking error at the beginning and end of each practice session, offline (rest-driven) learning was 
measured by comparing the end of the first practice session to the beginning of the second, and retention was 
measured by comparing the beginning of the first practice session to the beginning of the second. Online learning, 
offline learning, and retention were compared between the stroke survivors and uninjured controls.

Results Stroke survivors improved their tracking performance on the first day (p = 0.033); however, the amount of 
learning in stroke survivors was lower in comparison with the control group on both days (p ≤ 0.05). Interestingly, 
stroke survivors showed higher offline learning gains when compared with uninjured controls (p = 0.011).

Conclusions Even stroke survivors with no perceivable motor impairments have difficulty acquiring new motor skills 
related to walking, which may be related to the underlying neural damage caused at the time of stroke. Furthermore, 
stroke survivors may require longer training with adequate rest to acquire new motor skills.
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Background
Stroke is a major cause of adult disability worldwide, 
affecting millions of people each year [1, 2]. Common 
motor impairments after stroke include weakness on 
one side of the body [3], difficulty coordinating move-
ments [4, 5], and loss of balance [6]. These impairments 
often result in disabilities that restrict the mobility and 
independence of stroke survivors in their daily activi-
ties, which in turn highlights the need for effective reha-
bilitation techniques that can improve walking ability. 
Current approaches to gait recovery after stroke often 
involve task-specific training with assistive devices and 
interactive technologies [7, 8]. However, despite their 
effectiveness, these methods are no more beneficial than 
conventional rehabilitation in most clinical trials [9–11]. 
Therefore, there is a critical need for new therapies that 
can facilitate gait recovery after stroke.

A key to developing effective rehabilitation interven-
tions after stroke is through the application of motor 
learning principles. Although the importance of incor-
porating motor learning principles into stroke rehabilita-
tion programs has been repeatedly emphasized [12, 13], 
there still remains a large gap in our understanding of 
how learning and rehabilitation processes are interlinked 
in clinical populations [14]. There is some evidence that 
acquiring new skills can activate neuroplastic mecha-
nisms in the brain and that the process of learning a new 
motor skill shares similarities with relearning lost motor 
skills following a stroke [12, 15]. Therefore, studying 
motor learning deficits after a stroke can provide a better 
understanding of the specific mechanisms of neurophysi-
ological recovery, which could aid in the development of 
more effective interventions.

However, the effect of stroke on motor skill learning 
is difficult to estimate, as there is limited research on 
this topic and previous research has yielded conflicting 
results. For example, some studies suggest that stroke 
primarily affects the processes underlying motor control 
and execution, while leaving the learning of motor skills 
intact [16–19]. However, a recent study revealed that 
the extent of motor learning deficits following a stroke is 
dependent on the severity of motor impairment [20]. It is 
important to note that a major challenge in establishing 
evidence of learning deficits is that performance deficits 
can be misinterpreted as learning deficits [21, 22]. This is 
supported by the observation that error-based learning 
capacity—learning driven by error relative to a desired 
action or goal—in stroke survivors is comparable to neu-
rologically intact adults when motor execution deficits 
are controlled for during the experiment [16, 19]. How-
ever, many of these prior studies, for good reasons, have 
focused on goal or action selection (i.e., where to move 
to or what movement can achieve the chosen goal) with 
less emphasis on motor acuity (i.e., the quality of the 

executed movements) [23]. More importantly, the experi-
mental tasks are often restricted to a single degree of 
freedom (DOF) movement, thereby making it challeng-
ing to generalize these findings to complex multi-DOF 
movements (e.g., gait) and limiting their functional rel-
evance to rehabilitation.

Another challenge in determining the effect of stroke 
on motor skill learning is that learning is mediated by 
both online and offline processes that may be differen-
tially affected by stroke. Specifically, changes in perfor-
mance can be due to learning during practice or from 
periods of rest between practice when information is 
consolidated and committed to long-term memory [24]. 
Changes due to practice are typically measured by evalu-
ating the change in performance from the beginning to 
the end of training (i.e., online learning), while consoli-
dation is measured by evaluating changes in performance 
from the end of training to the beginning of a follow-up 
session conducted in the following days (i.e., offline gains/
learning) [25]. The summation of these two processes can 
be evaluated by retention of learning, which is measured 
as a change from the beginning of training to the fol-
low-up session. Previous studies have shown that stroke 
survivors improve their performance on motor skills 
following a period of sleepful rest, while uninjured con-
trols reduce their performance. Interestingly, these same 
learning gains are not observed in stroke survivors who 
rest for an equivalent time interval without sleep [26–28]. 
As such, it seems possible that stroke survivors under-
going interventions involving learning may benefit from 
periods of sleep between practice sessions. Furthermore, 
it is possible that this advantage in offline gains is mask-
ing online deficits in studies that only measure reten-
tion. However, as mentioned above, these contributions 
of offline gains to skill learning in stroke survivors have 
not been investigated in complex, lower-extremity tasks 
that have relevance to gait rehabilitation. As a result, it is 
currently unclear how stroke affects motor learning and 
whether learning deficits are present in individuals with 
minimal impairment when performing functional lower-
extremity tasks such as walking.

Therefore, the purpose of this study was to evaluate the 
extent of motor learning deficits in chronic stroke survi-
vors using a functional leg motor skill learning task. To 
minimize the impact of paresis/weakness on our findings, 
we specifically recruited stroke survivors with minimal 
impairment. To comprehensively understand the effect 
of stroke on motor learning, we examined both online 
(i.e., changes that occur during practice within the same 
day) and offline (i.e., changes that occur after practice 
during periods of no practice between days) learning. To 
address the issue of task relevance to day-to-day activi-
ties, the task required participants to learn a gait pattern 
that required 30% greater hip and knee flexion during 
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the swing phase, which has been previously shown to 
be highly relevant in rehabilitation training for address-
ing stiff knee gait after stroke [29]. We hypothesized that 
stroke survivors with mild motor impairments would 
exhibit significant deficits in both online and offline 
learning and retention of motor skills during walking 
when compared with uninjured controls.

Methods
Participants
A total of 25 adults (10 individuals with stroke and 15 
elderly uninjured controls, Table  1) participated in this 
study. Older adults of similar age to the stroke survivors 
were recruited as controls to minimize age as a con-
founding factor in our analysis. This sample size provided 
us with a power β > 80% to detect statistical significance 
with a conservative effect size of n2 = 0.3 [30, 31] at a sig-
nificance level of α = 0.05 (computed in G*power 3.1.9.6, 
Test family: F tests, ANOVA: Repeated measures, within-
between interaction). Participants in the control group 
were also part of a different study that investigated the 
effects of aging on motor learning [31]. All participants 
were right leg dominant based on their preferred leg to 
kick a ball [32]. Stroke survivors were included in the 
study if they (1) had a radiologically (CT or MRI) con-
firmed ischemic or hemorrhagic stroke at least 6 months 
prior to the study, (2) had no significant cognitive deficits 
(Mini-Mental State Examination [MMSE] Score ≥ 22), 
(3) had no documented major sensory or propriocep-
tive deficits (determined via self-assessment and medical 
chart review during screening), (4) had no major motor 
deficits (determined by lower-extremity Fugl-Meyer ≥ 27 
or 78% of the total scale of 34 [33]), (5) were able to walk 
independently with or without assistive devices, (6) had 
no history of uncontrolled diabetes or hypertension, and 
(7) had no major orthopaedic issues or range of motion 
deficits. Control participants were included in the study 
if they (1) had no significant cognitive deficits (MMSE 
≥ 22), (2) had no significant orthopaedic or neurological 
issues, and (3) had no history major medical conditions, 
including uncontrolled diabetes or hypertension. We 
measured the stroke survivors’ lower extremity motor 
impairment with the lower-extremity Fugl-Meyer scale 
(LE-FM, 32.1 ± 2.2, range: 27–34, one participant was not 

measured). All participants were tested at a single labo-
ratory within the University of Michigan and signed a 
written informed consent prior to participation that was 
approved by the University of Michigan Human Subjects 
Institutional Review Board.

Experimental protocol
Participants learned a foot-trajectory tracking task on 
two consecutive days that were separated by about 24 h 
(Fig.  1(A)). Participants performed this task with their 
affected leg while walking on a motorized treadmill that 
was set to move at a constant speed of 0.89 m/s (2 mph, 
selected to minimize fatigue and align with previous 
studies using this paradigm [31, 32, 34, 35]) and wear-
ing the same foot- and leg-wear (i.e., shorts or spandex). 
The foot-trajectory tracking task required participants to 
adjust their hip and knee angles during the swing phase 
of walking to match a target trajectory projected onto a 
computer monitor placed in front of them. On both days, 
the experiment consisted of four phases: baseline, pre-
test (Pre), training (Tr), and post-test (Post) (Fig.  1(B)). 
During baseline, participants walked normally on the 
treadmill for one minute. During the pre-test, the par-
ticipants performed the foot-trajectory tracking task for 
one minute and their initial performance on the task was 
evaluated. Training consisted of repeated practice of the 
foot-trajectory tracking task. Participants completed 
eight blocks of practice, with each block lasting one 
minute and separated by one minute of rest where the 
treadmill was stopped. In the post-test, the participants 
again performed the foot-trajectory tracking task for one 
minute and changes in target-tracking performance were 
assessed. For stroke participants, the more-affected side 
was used as the training leg (3 left leg and 7 right leg), 
and for control participants, the training leg for each par-
ticipant was determined randomly (7 left leg and 8 right 
leg). In the post-test, the participants’ final performance 
was evaluated by assessing their final target-tracking 
error. Participants were evaluated on the task on two 
subsequent days so that we could examine the contribu-
tion of rest between days to learning.

Table 1 Demographics of participants. Mean ± standard deviation for age, mass, height, MMSE score, lower-extremity Fugl-Meyer 
(LE-FM), self-selected gait speed, and sleep quality have been reported. The MMSE score can range from 0 to 30. LE-FM score can range 
from 0 to 34. Sleep quality rated on scale from 0 (best possible) to 10 (worst possible)
Group Sex Age (year) Mass (kg) Height (m) MMSE score LE-FM score Gait speed Sleep quality
Stroke 5 females,

5 males
58.3 ± 8.9 76.5 ± 20.5 1.7 ± 0.1 28.3 ± 2.2 32.1 ± 2.2 1.3 ± 0.2 2.5 ± 2.2

Control 10 females,
5 males

65.3 ± 2.9 72.0 ± 13.2 1.6 ± 0.1 29.3 ± 0.8 N/A 1.24* 3.5 ± 2.9

* indicates that data is taken from normative data set (Kasovic et al. 2021 [49], “Normative Data for Gait Speed and Height Norm Speed in ≥ 60-Year-Old Men and 
Women”)
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Foot-trajectory tracking task
A custom-designed, real-time motion tracking system, 
developed using LabVIEW 2011 and NI Vision Assistant 
(National Instruments Corp., Austin, TX, USA), was used 
for the motor learning task [36]. The system consisted of 
a camera (C920 Pro HD Logitech Webcam, Logitech, San 
Jose, CA, USA) and computed the sagittal plane hip and 
knee kinematics during walking by tracking three 19 mm 
retroreflective markers positioned on the participants’ 
greater trochanter, lateral epicondyle of the femur, and 
lateral malleolus of the ankle. The target template tra-
jectory for the foot-trajectory tracking task was created 
based on the participants’ sagittal plane hip and knee 
kinematics data obtained during baseline walking. The 
target trajectory was generated by scaling (1.3×) the hip 
and knee angles during swing phase of the normal walk-
ing trial and projecting this template in the end-point 
space, specifically the trajectory of the ankle relative to 

the hip on the sagittal plane (Fig. 1(C)). This was achieved 
using the following forward kinematic equation:

 

[
xa
ya

]
=

[
sin (θ h) −sin(θ k − θ h)

−cos (θ h) −cos(θ k − θ h)

] [
l1
l2

]

Where xa and ya are the x and y positions of the ankle 
lateral malleolus relative to the hip, l1 is the distance 
between hip and knee markers (i.e., thigh segment), 
l2 is the distance between knee and ankle markers (i.e., 
shank segment), θh and θk are the anatomical hip and 
knee angles. The target template was smoothed using a 
Hanning window to prevent abrupt scaling at the begin-
ning and end of the swing phase. The template trajectory 
was then displayed concurrently with the participant’s 
actual foot trajectory on a computer monitor positioned 
in front of the participant. Participants were instructed 
to try and match the target template trajectory as best as 

Fig. 1 A schematic of the (A) experimental set-up and foot-trajectory tracking during treadmill walking, (B) experimental protocol, (C) participant’s base-
line trajectory and their scaled (30%) target trajectory, and (D) computation of tracking error represented by the non-overlapping area (shaded in grey)
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they can during the swing phase of their gait. Addition-
ally, they were asked not to alter the normal gait patterns 
of the opposite leg that was not involved in the foot-tra-
jectory tracking task.

Data analyses
The performance on the foot-trajectory tracking task 
(i.e., how closely the participant’s actual trajectory 
matched the target trajectory spatially) was evaluated 
by computing the tracking error for each block. Track-
ing error was calculated as the difference in area (i.e., 
non-overlapping area) in pixels between the participant’s 
actual foot trajectory and the target template trajectory 
for each stride (Fig. 1(D)). This method of error compu-
tation was selected to align with previous work and is 
useful to prevent positive and negative error cancella-
tion when examining complex shapes [31, 32, 34, 35, 37]. 
This stride-by-stride tracking error was then expressed 
as a percentage of the area within the participant’s target 
template and averaged across strides for each block. Nor-
malizing to each participant’s target template accounts 
for differences in target templates between participants 
[31, 32, 34, 35]. For the purposes of this study, four per-
formance metrics were derived from the tracking error 
data on Day 1 and Day 2: (1) online learning (Day 1), 
(2) online learning (Day 2), (3) offline learning, and (4) 
retention (Fig.  1(B)). The amount of online learning on 
Day 1 (D1) and Day 2 (D2) was evaluated by comparing 
the tracking error during Pre blocks on Day 1 (D1-Pre) 
and Day 2 (D2-Pre) to Post blocks on Day 1 (D1-Post) 
and Day 2 (D2-Post), respectively. The amount of offline 
learning was evaluated by computing the difference in 
tracking error during the Pre block on Day 2 (D2-Pre) 
from the Post block on Day 1 (D1-Post). It is important to 
note that the offline gain metric is measuring the change 
in performance between days and is therefore examin-
ing the contribution of prolonged rest to learning. The 
amount of retention was evaluated by comparing the 
tracking error during the Pre block on Day 1 (D1-Pre) to 
Pre block on Day 2 (D2-Pre).

Statistical analysis
All statistical analyses were performed in IBM SPSS for 
Windows Version 27 (SPSS Inc., Chicago, IL). A two-
sample t-test was used to determine if there were any ini-
tial performance differences between the two groups. To 
evaluate if stroke affected the online learning and reten-
tion processes, we tested the differences in the amount of 
online learning (changes in tracking error on Day 1 and 
Day 2: D1-Post relative to D1-Pre and D2-Post relative 
to D2-Pre) and retention (initial tracking error on Day 
2 relative to initial tracking error on Day 1: D2-Pre rela-
tive to D1-Pre) between the stroke and the control par-
ticipants using repeated measures analysis of covariance 

(ANCOVA) with block as within-subject factor, group as 
between-subjects factor, and the appropriate Pre block 
as the covariate (e.g., D1-Pre was used as a covariate for 
D1 online learning and retention and D2-Pre was used as 
a covariate for D2 online learning). To evaluate if stroke 
affected the consolidation process, we tested the differ-
ences in the amount of offline learning (changes in track-
ing error from the end of Day 1 to the beginning of Day 
2: D2-Pre – D1-Post) between the stroke and the con-
trol participants using a one-way analysis of variance 
(ANOVA) with group as the between-subjects factor. 
These analyses are depicted graphically in Fig.  1(B). A 
significant interaction effect was followed by appropriate 
post-hoc analysis with Sidak correction. All analyses used 
a significance level of α  = 0.05.

Robustness check analysis
Robustness checks were also performed by evaluat-
ing the results in relative terms (i.e., % baseline) and via 
exponential curve-fitting in addition to the above method 
[38]. For the relative analysis, we normalized the tracking 
error as a percentage of their respective baseline values 
(e.g., Day 1 online learning = [D1-Post/D1-Pre] × 100; 
offline learning = [D2-Pre/D1-Post] × 100) and compared 
those values between groups using two-sample t-tests 
with bootstrapping (10,000 iterations). For the curve-
fitting analysis, we used a custom MATLAB program 
(R2019b, MathWorks, Natick, MA, USA) to fit an expo-
nential function to each participant’s performance using 
a trust-region-reflective least-squares algorithm and the 
following expression.

 
min
a,b,c

∑ 9

i=0

(
y (i)−

−
y (i)

)2

;
−
y (i) = ae−bx(i) + c

Here, y  and −y  are the participant’s measured and esti-
mated tracking error, respectively, x(i) is the ith experi-
mental block (e.g., x(0) = Pre, x(1) = TM-1, etc.), and 
a, b and c are function coefficients. In the context of 
this study, coefficients b and c can be thought of as the 
learning rate and asymptote, respectively, and a + c can 
be thought of as initial error. During fitting, the follow-
ing bounds were applied on each coefficient to prevent 
convergence on unreasonable local minima: aε  [min(y) – 
min(y [8], y [9]), y [1] – min(y [8], y [9])], bε  [0, 5], and cε  
[min(y [8], y [9]), max(y [8], y [9])]. We then repeated the 
ANCOVAs used in our primary statistical analyses (e.g., 
comparing D1-Pre to D1-Post with D1-Pre as a covari-
ate) with the predicted error values and the coefficients. 
In the latter analysis of the coefficients, a + c was treated 
as the initial error and the covariate on each day, and c  
was treated as the final error. To compare the learning 
rates (b) between groups, we also performed a one-way 
between-subjects ANOVAs on the values of b between 
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groups on each day (note that ANOVA was used instead 
of ANCOVA for analysis of b because there is no appro-
priate covariate for this term). A significance level of 
α = 0.05 was used for all statistical analyses with appropri-
ate post-hoc comparisons with Sidak adjustments.

Results
Day 1 online learning
Performance of a typical participant from each group is 
shown in Fig. 2, and average group performance on the 
tracking task across each block on days one and two is 
shown in Fig.  3. While there were no initial differences 
in tracking error between groups (t1,23 = 1.338; p = 0.194), 
there was a significant block × group interaction effect 
on the amount of online learning on Day 1 (F1,22 = 7.755; 
p = 0.011). Post-hoc analysis indicated that although both 

groups improved on tracking performance with prac-
tice on Day 1 (stroke: Δ = 3.2 ± 1.4%, p = 0.033; control: 
Δ = 8.4 ± 1.1%, p < 0.001; Figs.  3B and 4), the amount of 
tracking error at the end of practice on Day 1 was greater 
in stroke survivors when compared with the control 
group (19.6 ± 1.4% vs. 14.5 ± 1.1%, p = 0.033; Figs. 3B and 
4). Note that the younger adult curve in Fig.  3 depicts 
data from a previous study using the same paradigm 
[31] to provide context in age-related effects on motor 
learning.

Day 2 online learning
There was a significant block × group interaction effect 
on the amount of online learning on Day 2 (F1,22 = 4.757; 
p = 0.040; Figs. 3B and 4). Post-hoc analysis indicated that 
although the control participants improved on tracking 

Fig. 2 A representative example of participants’ tracking error in each group on Day 1 (left) and Day 2 (right)
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performance with practice on Day 2 (Δ = 4.4 ± 0.8%, 
p < 0.001; Figs. 3B and 4), the stroke participants did not 
(Δ = 1.5 ± 1.0%, p = 0.165; Figs.  3B and 4). The amount of 
tracking error at the end of practice on Day 2 was greater 
in stroke survivors when compared with the control 
group (16.3 ± 1.0% vs. 13.4 ± 0.8%, p = 0.046; Figs. 3B and 
4).

Retention
Retention of performance of the tracking task is shown 
in Figs. 3C and 5A. There was a significant effect of block 
on the amount of retention after training (F1,22 = 5.403; 

p = 0.030). On average, there was a 5.0 ± 1.5% decrease in 
tracking error from D1-Pre to D2-Pre in stroke survivors 
and a 5.1 ± 1.9% decrease in tracking error from D1-Pre 
to D2-Pre in the control participants. However, there 
was no group or block × group interaction effect on the 
amount of retention after training.

Offline gains
Offline changes in the performance of the tracking task 
are shown in Figs.  3C and 5B. There was a significant 
effect of group on the amount of offline gains in motor 
performance (F1,23 = 7.602; p = 0.011). On average, stroke 

Fig. 3 (A) The average trajectory tracking error in each group on Day 1 (left) and Day 2 (right). For comparison purposes, we provide data (power-fit curve 
of the mean data) from young, uninjured adults taken from a previous publication [31]. (B) Bar plots showing online differences in learning between the 
stroke and the control group. (C) Bar plots showing differences in the amount of retention and offline gains between the stroke and the control group. 
Data for online learning and retention are shown as marginal mean changes (Δ) in tracking error. The error bars denote the standard error of the mean 
and asterisks (*) denotes statistical significance (p < 0.05). Positive values indicate improvements in performance
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survivors experienced a 2.2 ± 1.6% reduction in tracking 
error from the end of Day 1 to the beginning of Day 2 
(indicating offline gains), whereas control participants 
had a 3.6 ± 1.3% increase in tracking error during the 
same period (indicating offline loss).

Robustness check
Relative error check
There was a significant difference between groups in the 
amount of online learning on Day 1 (stroke: 83.6 ± 6.5%, 
control: 66.7 ± 4.8%, mean difference = 16.9 ± 7.5%, 
95% bootstrapped confidence interval = 2.1–32.9%, 
p = 0.045), but the differences in the amount of online 
learning on Day 2 barely missed statistical significance 
(stroke: 93.2 ± 6.1%, control: 78.6 ± 4.4%, mean differ-
ence = 14.6 ± 7.4%, 95% bootstrapped confidence inter-
val = − 0.1–29.1%, p = 0.066). There was also a significant 
difference between groups in the amount of offline 
learning (stroke: 92.7 ± 8.0%, control: 127.7 ± 8.1%, mean 
difference = − 35.1 ± 11.0%, 95% bootstrapped confi-
dence interval = − 56.9–−12.9%, p = 0.007) but no dif-
ference between groups in the amount of retention 
(stroke: 75.6 ± 6.7%, control: 84.2 ± 7.4%, mean differ-
ence = − 8.6 ± 9.6%, 95% bootstrapped confidence inter-
val = − 28.1–10.2%, p = 0.397).

Exponential-fit check
The results of the curve-fitting analysis were similar 
to those of the primary analysis and the first robust-
ness check using relative changes (see Supplementary 
Material for quantitative results: https://osf.io/hzne3/). 
Specifically, we found that stroke survivors learned to a 
lesser extent than controls on Day 1 and Day 2 (Fig. 6(A-
B)). There were no between-group differences in reten-
tion, but the stroke survivors had greater offline gains 
than controls (Fig.  6(C)). These robustness checks indi-
cate that our findings were generally robust to different 
analyses, however the curve-fitting approach increased 
data variability, resulting in some metrics to fall below 
significance.

Discussion
The objective of this study was to examine the extent 
of motor learning deficits in stroke survivors with low 
impairment using a functional, lower-extremity task 
that focused on motor acuity during gait. We focused 
on motor acuity because the bulk of literature examin-
ing motor learning following stroke has focused on the 
stroke survivor’s ability to select the right action (e.g., 
amplitude, order in sequence) rather than their quality of 
movement execution (e.g., kinematics, variability) [23]. 
Furthermore, learning movement quality is critical for 

Fig. 4 Raincloud plots showing distributions of normalized tracking error before (Pre) and after (Post) training in stroke survivors [top panel, (A) and (B)] 
and controls [bottom panel, (C) and (D)] on both days

 

https://osf.io/hzne3/
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lower extremity tasks, especially in the context of reha-
bilitation where the quality of a stride is stressed rather 
than simply its completion [39]. Accordingly, stroke sur-
vivors and neurologically intact controls practiced walk-
ing on a treadmill with a new gait pattern in two separate 
sessions. To perform the new gait pattern, participants 
matched an ankle trajectory that necessitated 30% more 
hip and knee flexion during the swing phase. We found 
that stroke survivors showed a lower reduction in track-
ing error on both days (i.e., online learning deficits) when 
compared with the control group, who also are known 
to exhibit learning deficits due to the normal aging pro-
cess (see Fig. 3 for comparison of both groups to cohort 
of young, uninjured controls taken from a previous study 
[31]). Another key finding was that stroke survivors 
showed offline performance gains between days while the 
control group showed offline performance loss, indicat-
ing that although stroke survivors have lower ability in 
online learning, they have an advantage in offline learn-
ing during a period of rest. Although our study was lim-
ited by a small sample size, our participants were quite 
homogenous in terms of impairment level, and our find-
ings were consistent regardless of how the analyses were 
performed (i.e., absolute vs. relative learning), indicating 
the robustness of our results.

The first notable finding from this study is that 
although stroke survivors were able to learn the task and 
improve with practice, they showed less improvement in 
their tracking error as compared with the control group 
on both days. This finding indicates that stroke survi-
vors have online motor learning deficits when compared 
with neurologically intact adults, which agrees with some 
prior studies [40, 41] but differs to some extent from 
other existing motor learning literature [16–19, 42]. It is 
likely that this divergence from previous literature results 
from our examination of mildly impaired individuals 

using a multi-DOF, functionally relevant motor acuity 
task during gait. For example, recent research suggests 
that reinforcement learning was impaired early after the 
stroke but not in the chronic phase, whereas error-based 
learning was unaffected after stroke at either time point 
when compared with controls [16]. However, our study 
indicates that online motor learning deficits are present 
even in chronic stroke survivors with minimal motor 
impairments when compared with controls. A key dis-
tinction between the two studies that could explain this 
discrepancy is the differences in the learning paradigm 
(skill learning in our study vs. visuomotor adaptation in 
the previous study). Further, gait is a highly practiced 
movement involving automatic processes such as bal-
ance and posture, and therefore invokes both conscious 
(e.g., corticospinal) and automatic (e.g., extrapyramidal) 
motor control pathways [43]. For participants, learning a 
novel gait pattern requires making conscious alterations 
to this highly practiced movement, which could influ-
ence both these conscious and automatic pathways. On 
the contrary, non-functional upper-extremity tasks are 
generally unpracticed motions that do not impact bal-
ance and posture and are therefore more likely governed 
primarily by the conscious motor control pathways [44]. 
Because these tasks likely require modulation of different 
motor control pathways, it is possible that they involve 
different learning mechanisms. Furthermore, even mini-
mally impaired stroke survivors often have diminished 
balance that can influence their ability to prevent falls 
[45]. Therefore, it is possible that the observed learning 
deficits arose from stroke survivors’ resistance to deviate 
from their current gait pattern and balance on one leg to 
perform the necessary exploration of the motor control 
task space, which is necessary to learn a motor skill [46]. 

It is possible that some of the observed learning defi-
cits could be attributed to stroke characteristics. For 

Fig. 5 Raincloud plots showing distributions of (A) retention (computed as changes in normalized tracking error from Pre block on Day 1 to Pre block 
on Day 2) and (B) offline gains (computed as changes in normalized tracking error from Post block on Day 1 to Pre block on Day 2) in stroke survivors 
and controls
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example, lesions in the prefrontal cortex could have a 
greater impact during early stages of learning and on 
motor consolidation processes [47, 48]. Similarly, lesions 
involving the extrapyramidal systems (e.g., basal gan-
glia) can disrupt implicit and explicit learning processes 
[47]. Unfortunately, lesion location information was not 
evaluated for this study, therefore it is difficult to deter-
mine if the observed results could be attributed to dam-
age to specific pathways. Furthermore, other factors that 
interfere with performance, such as fatigue, differences in 
preferred gait speed, and affected side, could have con-
tributed to this group difference in learning. However, 
these factors most likely had a minimal impact because of 

the following: (1) participants walked at a slow speed and 
received adequate rest between blocks to prevent fatigue, 
(2) treadmill speed was sufficiently lower than preferred 
gait speed for both groups and stroke participants’ gait 
speed was comparable to controls (Table 1 [49]), and (3) 
our previous studies with this paradigm have shown that 
learning is not affected by limb dominance [32]. Future 
studies should examine stroke-related learning deficits in 
walking tasks to fully assess the extent of stroke’s effect 
on learning.

Another interesting finding was that despite the defi-
cits in online learning observed in stroke survivors, we 
did not detect any differences in skill retention between 

Fig. 6 (A) Average predicted tracking error in each block on Day 1 (left) and Day 2 (right) using exponential functions fit to participants’ tracking error. 
Here, the shaded regions represent the standard error of each mean curve. (B) Bar plots showing online differences in predicted learning between the 
stroke and the control group. (C) Bar plots showing differences in the amount of predicted retention and offline gains between the stroke and the control 
group. Data for online learning and retention are shown as marginal mean changes (Δ) in tracking error. The error bars denote the standard error of the 
mean and asterisks (*) denotes statistical significance (p < 0.05). Positive values indicate improvements in performance
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the groups. This occurred because of the differences in 
offline learning between groups—stroke survivors exhib-
ited offline performance gains whereas the control group 
exhibited an offline performance loss. This finding aligns 
with previous research, highlighting the complex inter-
play between neurological damage and motor learning 
processes post-stroke [12, 50]. One potential mechanism 
that could explain decreased ‘online’ learning is ‘reactive 
inhibition’— the process where performance worsens 
over repeated executions of the task and improves with 
breaks [51]. Stroke survivors could exhibit increased 
reactive inhibition, which interferes in subsequent target-
matching and thus decreases their online gains, but when 
the reactive inhibition dissipates, they “catch up” with the 
other group. This is typically observed in “massed” vs. 
“distributed” practice effects – the massed group shows 
poor online learning but then huge gains over the break 
[51]. To examine this issue further, we performed an 
exploratory analysis to determine if stroke survivors also 
demonstrated offline learning advantages over shorter 
rest periods. To address this, we computed micro-offline 
learning for each rest period, defined as the difference 
between the average tracking error on the first five strides 
of a target-matching block and the last five strides of 
the preceding block [52, 53]. Interestingly, there did not 
appear to be any systematic difference between groups 
in micro-offline learning (Fig.  7), suggesting that offline 

learning advantages only appear following longer periods 
of rest that include sleep.

In our study, it is possible that offline learning could 
be treated as a measure of sleep-dependent memory 
consolidation —a process of the central nervous system 
where recent memory traces are committed to long-
term memory during rest—although this should be veri-
fied with future experiments with another group that 
undergoes matched intervals of rest without sleep [54]. 
Existing research examining this process has shown 
that stroke survivors demonstrate greater motor per-
formance in upper extremity motor tasks following a 
period of sleep as compared with an equivalent period of 
wakefulness, but the same is not true for neurologically 
intact individuals [27, 28, 48, 55, 56]. Our results directly 
align with these prior findings and extend them to a 
functional lower-extremity task. This phenomenon may 
reflect heightened neural plasticity or alternative neural 
pathways recruited to compensate for damaged regions 
wherein post-stroke plasticity facilitates continued skill 
acquisition (or retention of skills acquired) during rest. 
Importantly, these findings indicate that stroke-induced 
neuroplastic changes can also lead to functionally ben-
eficial adaptations apart from the commonly recognized 
maladaptive processes. Indeed, the observed online 
learning deficits in conjunction with the offline learn-
ing gains could evidence the detriments and benefits of 

Fig. 7 Average micro-offline learning between each block on Day 1 (left) and Day 2 (right). Here, micro-offline learning is defined as the difference in 
tracking error at the beginning of a block and the error at the end of the previous block. Error bars represent standard error of the mean
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the same repair process; albeit the precise mechanisms 
underlying these beneficial adaptations are not clear.

Several additional mechanisms could potentially 
explain why individuals with stroke may exhibit enhanced 
offline motor learning compared with older controls who 
do not demonstrate the same phenomenon. First, the 
brain undergoes significant neuroplastic changes after a 
stroke as it attempts to reorganize and compensate for 
the damaged areas [22]. It is possible that these neuro-
plastic changes enhance the brain’s ability to consolidate 
and retain motor memories during rest or sleep, leading 
to improved offline motor learning [50]. Second, stroke 
survivors often develop compensatory mechanisms 
(e.g., increased reliance on the premotor cortex or other 
undamaged regions) to overcome motor deficits [57, 58]. 
During rest periods, these compensatory mechanisms 
may be reinforced or optimized, resulting in enhanced 
offline motor learning [59]. Older controls, who have 
not experienced neurological damage, may lack the same 
need for compensatory mechanisms, and therefore, do 
not exhibit the same enhancement in offline motor learn-
ing. Third, stroke can disrupt normal sleep architecture, 
leading to alterations in sleep stages and patterns [60, 
61]. Some studies suggest that certain sleep stages, par-
ticularly REM and slow-wave sleep, are crucial for motor 
memory consolidation [27, 62]. Changes in sleep archi-
tecture or enhanced sleep due to pharmacological effects 
(e.g., gabapentin improves slow wave sleep [63] and total 
sleep time [64]) post-stroke may create a more conducive 
environment for offline motor learning compared with 
older controls. Indeed, the stroke survivors who par-
ticipated in our study reported superior sleep quality as 
compared to the controls (Table 1). Finally, aging is asso-
ciated with decreased neuroplasticity due to alterations 
in GABAergic activity [65–67], which may impact the 
brain’s ability to learn and consolidate motor memories 
during sleep and may be offset by neuroplastic mecha-
nisms following the stroke. It is to be noted though that 
the differences in online and offline learning observed 
in this study occurred despite participants being in the 
chronic period of stroke recovery (i.e., when changes in 
neuroplasticity are believed to have plateaued), indicating 
that the enhancement in offline learning could be a sus-
tained phenomenon. Overall, one or many of the above 
mechanisms likely contributed to the observed differ-
ences in offline motor learning between individuals with 
stroke and older controls. However, it is important to 
note that retention was only evaluated after one day, so it 
is unclear if offline learning would have led to improved 
retention following the second day of training. There-
fore, further research is needed to fully elucidate the 
underlying mechanisms and their implications for stroke 
rehabilitation.

The results of this study have meaningful implications 
for post-stroke gait rehabilitation. First, we found that 
stroke survivors learned to a lesser extent than neurologi-
cally intact individuals over the same period. Therefore, 
it is likely that, when learning or relearning a motor skill 
following a stroke, stroke survivors will need more prac-
tice to achieve similar performance levels as uninjured 
controls. This would also imply that interventions involv-
ing motor learning in stroke survivors should incorporate 
longer training than in neurologically intact adults. Addi-
tionally, we also found that stroke survivors demonstrate 
learning advantages over uninjured persons over a period 
of rest involving sleep. Therefore, interventions involv-
ing motor learning could likely improve outcomes if they 
include breaks between sessions where stroke survivors 
have the opportunity to rest and consolidate learning 
from practice. However, future research is necessary to 
fully elucidate the extent of learning deficits in stroke and 
how sleep can facilitate learning.

Conclusions
In summary, we investigated differences in learning a 
functional lower extremity motor skill between mildly 
impaired stroke survivors and neurologically intact indi-
viduals. We found that neurologically intact individuals 
showed greater motor performance with practice as com-
pared to stroke survivors, but stroke survivors showed 
greater offline learning than neurologically intact indi-
viduals. These findings lend important insights into how 
stroke affects the learning process and may have poten-
tial implications for gait rehabilitation after stroke.
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