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Abstract 

Background  Calibrated electromyography (EMG)-driven musculoskeletal models can provide insight into internal 
quantities (e.g., muscle forces) that are difficult or impossible to measure experimentally. However, the need for EMG 
data from all involved muscles presents a significant barrier to the widespread application of EMG-driven modeling 
methods. Synergy extrapolation (SynX) is a computational method that can estimate a single missing EMG signal 
with reasonable accuracy during the EMG-driven model calibration process, yet its performance in estimating a larger 
number of missing EMG signals remains unknown.

Methods  This study assessed the accuracy with which SynX can use eight measured EMG signals to estimate muscle 
activations and forces associated with eight missing EMG signals in the same leg during walking while simultaneously 
performing EMG-driven model calibration. Experimental gait data collected from two individuals post-stroke, includ-
ing 16 channels of EMG data per leg, were used to calibrate an EMG-driven musculoskeletal model, providing “gold 
standard” muscle activations and forces for evaluation purposes. SynX was then used to predict the muscle activations 
and forces associated with the eight missing EMG signals while simultaneously calibrating EMG-driven model param-
eter values. Due to its widespread use, static optimization (SO) applied to a scaled generic musculoskeletal model 
was also utilized to estimate the same muscle activations and forces. Estimation accuracy for SynX and SO was evalu-
ated using root mean square errors (RMSE) to quantify amplitude errors and correlation coefficient r values to quantify 
shape similarity, each calculated with respect to “gold standard” muscle activations and forces.

Results  On average, compared to SO, SynX with simultaneous model calibration produced significantly more 
accurate amplitude and shape estimates for unmeasured muscle activations (RMSE 0.08 vs. 0.15, r value 0.55 vs. 0.12) 
and forces (RMSE 101.3 N vs. 174.4 N, r value 0.53 vs. 0.07). SynX yielded calibrated Hill-type muscle–tendon model 
parameter values for all muscles and activation dynamics model parameter values for measured muscles that were 
similar to “gold standard” calibrated model parameter values.

Conclusions  These findings suggest that SynX could make it possible to calibrate EMG-driven musculoskeletal 
models for all important lower-extremity muscles with as few as eight carefully chosen EMG signals and eventually 
contribute to the design of personalized rehabilitation and surgical interventions for mobility impairments.
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Background
Muscle forces are essential for maintaining body posture 
and engaging in functional activities. A comprehensive 
understanding of the forces generated by individual mus-
cles is crucial for understanding the internal biomechani-
cal mechanisms and motor control involved in human 
movement [1–3]. More importantly, this knowledge 
holds significant value in identifying musculoskeletal 
pathologies [4, 5] and neurological disorders [6, 7] as well 
as for designing effective rehabilitation or surgical inter-
ventions [8–10]. However, unlike joint moments, which 
can be measured in vivo either directly using dynamom-
eters or indirectly using inverse dynamics, muscle forces 
cannot currently be measured easily in  vivo, though 
ongoing research is seeking to address this limitation 
[11, 12]. Unfortunately, these research efforts have been 
hindered by technical challenges, high cost, and ethical 
considerations [11, 12], motivating the need for compu-
tational methods utilizing a musculoskeletal model to 
advance our understanding of muscle force generation 
during movement.

The two computational methods most commonly 
employed for estimating muscle activations and forces 
using a musculoskeletal model are electromyography 
(EMG)-driven modeling [6, 13–19] and static optimiza-
tion (SO) [20–26]. Both methods employ a geometric 
model of the musculoskeletal system actuated by Hill-
type muscle–tendon models [27], both utilize nonlin-
ear optimization to resolve the “muscle redundancy 
problem” [28] (i.e., many more muscles than degrees of 
freedom (DOFs) in the skeleton, resulting in control 
indeterminacy), both require experimental joint kinemat-
ics and moments as inputs, and both find muscle activa-
tions and forces such that predicted net joint moments 
from a musculoskeletal model match experimental net 
joint moments calculated via inverse dynamics as closely 
as possible. However, the optimization problem formula-
tions for these two methods are quite different, as out-
lined in Table S1 of the supplementary materials.

Differences in optimization problem formulation stem-
ming from the use or non-use of experimental muscle 
excitations as inputs have important implications for the 
capabilities and limitations of EMG-driven modeling and 
SO. Since EMG-driven modeling uses experimental mus-
cle excitations to constrain the time-varying shapes (and 
often amplitudes) of the predicted muscle excitations, 
model joint moments never match experimental joint 
moments perfectly. Consequently, EMG-driven modeling 
allows for calibration of musculoskeletal model param-
eter values when the optimization is performed over all 
time frames together. In contrast, SO finds muscle acti-
vations that make model joint moments match experi-
mental joint moments perfectly. Consequently, there are 

no joint moment errors that can be used for calibrating 
musculoskeletal model parameter values. Furthermore, 
optimization of each time frame separately can some-
times produce muscle activation discontinuities between 
time frames [29, 30], while minimization of muscle acti-
vations with no constraints on the time-varying shapes of 
the predicted muscle activations produces the smallest 
possible muscle activations, resulting in minimum co-
contraction solutions [27, 31] that may not be physiologi-
cally realistic for some subjects or movement conditions. 
Nonetheless, because of its simplicity and the ease with 
which it can be performed, SO remains the most com-
monly used computational method for estimating muscle 
activations and forces.

Although EMG-driven modeling possesses the advan-
tages noted above and produces physiologically rea-
sonable estimates of muscle activations and forces [18], 
missing EMG data from muscles that contribute signifi-
cantly to a measured movement has limited the adoption 
of EMG-driven modeling for biomechanical research and 
routine clinical gait analysis. This issue is the result of two 
practical challenges. First, surface electrodes are inca-
pable of measuring EMG signals from important deep 
muscles that contribute significantly to joint moments. 
Common examples are the iliacus and psoas muscles, 
strong hip flexor muscles that contribute significantly to 
walking function. While fine wire electrodes can capture 
EMG signals from deep muscles, their invasive nature, 
the need for specialized insertion skills, the substantial 
preparation time required for insertion, and the potential 
for discomfort and pain to the subject have limited their 
utilization. Furthermore, in certain scenarios, deep mus-
cles may be inaccessible even with fine wire electrodes. 
For instance, the use of a fine wire electrode is contrain-
dicated for safety reasons in subjects with a cancerous 
tumor near the muscle to be measured. Second, EMG 
systems possess a limited number of channels for collect-
ing EMG data. Many EMG systems available in human 
movement labs provide support for 16 channels of data, 
which means only eight channels of EMG data can be 
collected per leg when measuring activities such as walk-
ing or running. However, EMG-driven lower extremity 
models require roughly 16 channels per leg to inform the 
model without omitting any important large muscles. 
These challenges are significant as the absence of EMG 
data from important muscles can have a negative impact 
on the reliability of force estimates for other muscles 
that span the same joints [19, 23]. To address the issue 
of missing EMG signals when performing EMG-driven 
modeling, researchers either exclude from the musculo-
skeletal model muscles with missing EMG data [22, 31], 
include such muscles in the model but assume that they 
generate only passive force [19], or include such muscles 
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and use SO to estimate the associated muscle activations 
[22, 23].

To provide a better alternative for addressing miss-
ing EMG signals, researchers have recently developed a 
modified EMG-driven modeling approach called “Syn-
ergy Extrapolation” (SynX) that uses muscle synergy con-
cepts to estimate missing muscle excitation data [32–34]. 
The theoretical basis for SynX is that a large number (e.g., 
8 or 16) of experimentally measured muscle excitations 
can be represented by a smaller number (e.g., 4 or 5) of 
muscle synergies composed of time-varying synergy exci-
tations and associated time-invariant synergy vectors, 
where the weights in each synergy vector define how the 
associated synergy excitation contributes to all muscle 
excitations. The synergy excitations provide information 
about the timing of muscle contractions, while the syn-
ergy vectors provide information about the coordination 
of muscle contractions.

Based on this observation, the historical develop-
ment of SynX followed a logical sequence of three stud-
ies. First, SynX was shown to work in theory for fitting 
eight missing muscle excitations using synergy excita-
tions extracted from eight measured muscle excitations 
[32]. For this study, 16 muscle excitations per leg meas-
ured experimentally from three subjects during walking 
were split into two groups of eight “measured” and eight 
“missing” excitations, and synergy excitations calculated 
from the eight measured excitations were used to fit the 
eight missing excitations. This study only established the 
theoretical feasibility of SynX, since the fitting process 
required the use of the missing muscle excitations. Sec-
ond, SynX was shown to work in practice for predicting 
a single missing muscle excitation if a musculoskeletal 
model with pre-calibrated parameter values was used in 
the process [33]. The same sets of 16 experimental mus-
cle excitations were again split into two groups, where 
15 muscle excitations were treated as “measured” and 
one muscle excitation at a time collected from a fine 
wire electrode was treated as “missing.” A key limitation 
of this study was the need for a pre-existing calibrated 
musculoskeletal model before the missing muscle exci-
tation could be predicted reliably, which necessitates 
a priori knowledge of the missing muscle excitation for 
initial model calibration. Third, SynX was shown to work 
in practice for predicting a single missing muscle excita-
tion while simultaneously calibrating musculoskeletal 
model parameter values [34]. A multi-objective optimiza-
tion problem was designed to predict one missing muscle 
excitation while simultaneously calibrating time-invar-
iant musculoskeletal model parameter values and time-
varying residual muscle activations needed to account 
for small errors in the measured muscle excitations. 
This study resolved the main limitation of the previous 

study by allowing EMG-driven model calibration and 
prediction of a single missing muscle excitation to be 
performed simultaneously. SynX has been used more 
recently to predict the activation of a single unmeasured 
upper-extremity muscle (e.g. biceps long head), achiev-
ing a Pearson’s correlation coefficient of up to 0.99 with 
the same muscle activation calculated from experimen-
tal EMG data withheld for evaluation purposes [35]. The 
next logical study in this progression is to evaluate how 
well SynX works in practice for predicting multiple miss-
ing muscle excitations while simultaneously calibrating 
musculoskeletal model parameter values. If SynX can 
predict missing muscle excitations reliably using a low 
number of EMG signals collected using only surface 
electrodes, the applicability of EMG-driven modeling to 
research and clinical questions will be greatly expanded.

This study evaluated how well SynX can estimate mus-
cle activations associated with eight channels of missing 
EMG data using synergy excitations associated with eight 
channels of measured EMG data while simultaneously 
calibrating musculoskeletal model parameter values. 
Experimental walking data collected from two subjects 
post-stroke were used for the evaluation. Time-varying 
quantities (muscle activations and forces along with net 
joint moments) and time-invariant model parameter 
values (activation dynamics and Hill-type muscle–ten-
don model parameter values) predicted by SynX were 
compared to “gold standard” results produced by EMG-
driven model calibration using a complete set of EMG 
data where no EMG signals were regarded as missing. 
Time-varying quantities (muscle activations and forces) 
predicted by SO using a scaled generic musculoskeletal 
model were also compared to the “gold standard” results 
to determine which method provides the most reliable 
predictions. In addition, the reliability with which SynX 
and SO can predict muscle activations and forces when 
using pre-calibrated musculoskeletal models was evalu-
ated to assess how model calibration affects muscle acti-
vation and force estimates from both methods.

Methods
Experimental data collection
Two previously published experimental walking data-
sets collected from hemiparetic subjects post-stroke 
were used for this study [17, 36]. One subject was high-
functioning (S1, male, 1.70  m tall, mass 80.5  kg, age 
79  years, right side hemiparesis, lower extremity Fugl-
Meyer Motor Assessment score of 32 out of 34), while 
the other subject was low-functioning (S2, male, 1.83 m 
tall, mass 88.5  kg, age 62  years, right side hemiparesis, 
lower extremity Fugl-Meyer Motor Assessment score 
of 25 out of 34). After giving written informed con-
sent, both subjects walked on a split-belt instrumented 
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treadmill (Bertec Corp., Columbus, OH, United States) 
at their self-selected speed (0.5 m/s for S1 and 0.35 m/s 
for S2) and fastest-comfortable speed (0.8 m/s for S1 and 
0.65 m/s for S2) for one minute. All experimental proce-
dures were approved by the University of Florida Health 
Science Center Institutional Review Board (IRB-01).

Sixteen channels of EMG data were collected from 
each leg of both subjects using both surface and fine 
wire electrodes (Motion Lab Systems, Baton Rouge, 
LA, United States). These extensive EMG data enabled 
every muscle in each leg of each subject’s musculoskel-
etal model (see below) to have an associated experimen-
tal EMG signal, providing an opportunity to verify the 
reliability of muscle activations and forces estimated by 
SynX and SO. Measured EMG signals were expanded 
to muscles with similar anatomical function (e.g., semi-
membranosus and semitendinosus) before being used as 
inputs to the EMG-driven modeling process (Fig. 1 and 
Supplementary Table  S2). Surface EMG data were col-
lected and expanded to the subsequent superficial mus-
cle groups: (1) GlutMax, expanded to gluteus maximus 
superior (glmax1), gluteus maximus middle (glmax2) 
and gluteus maximus inferior (glmax3); (2) GlutMedMin, 

expanded to gluteus medius anterior (glmed1), glu-
teus medius middle (glmed2), gluteus medius posterior 
(glmed3), gluteus minimus anterior (glmin1), gluteus 
minimus middle (glmin2), and gluteus minimus pos-
terior (glmin3); (3) SemiMembTen, expanded to semi-
membranosus (semimem) and semitendinosus(semiten); 
(4) RecFem, used for rectus femoris (recfem); (5) Bicfem, 
expanded to biceps femoris long head (bflh) and biceps 
femoris short head (bfsh); (6) VasMedInt, expanded to 
vastus medialis (vasmed) and vastus intermedius (vasint); 
(7) VasLat, used for vastus lateralis (vaslat); (8) TibAnt, 
used for tibialis anterior (tibant);( 9) Peroneus, expanded 
to peroneus brevis (perbrev) and peroneus long (perlong); 
(10) Sol, used for soleus (soleus). Additionally, fine-wire 
EMG data were collected and expanded to the following 
deep muscle groups: (1) iliopsoas, expanded to iliacus 
(iliacus) and psoas (psoas); (2) Adductors, expanded to 
adductor brevis (addbrev), adductor longus (addlong), 
adductor magnus distal (addmagDist), adductor magnus 
ischial (addmagIsch), adductor magnus middle (addmag-
Mid), and adductor magnus proximal (addmagProx); (3) 
Tibpost, used for tibialis posterior (tibpost).

Fig. 1  Overview of experimental EMG channels treated as “measured” (blue boxes) and “unmeasured” (orange italicized text) when performing 
SynX and SO, along with associated muscles in the OpenSim model for each subject (black italicized text). A total of 16 channels of EMG data were 
collected from each leg. Each EMG signal was expanded to muscles in the OpenSim model with similar anatomical function before being used 
as inputs to the EMG-driven modeling process. Superscripts 1 and 2 indicate “unmeasured” EMG signals for subject S1 and S2, respectively. Muscles 
were categorized based on their actuated degrees of freedom (DOFs), which included: hip flexion/extension (HipFE), hip adduction/abduction 
(HipAA), hip internal/external rotation (HipRot), knee flexion/extension (KneeFE), ankle plantarflexion/dorsiflexion (AnklePD), and ankle inversion/
eversion (AnkleIE)
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Small differences existed in the EMG data collected 
from the two subjects. For the high-functioning subject 
(S1), only a single surface EMG signal (referred to as 
GasMed) was collected for both heads of gastrocnemius 
and expanded to medial gastrocnemius (gasmed) and lat-
eral gastrocnemius (gaslat), and two fine-wire EMG sig-
nals (referred to as ExtDigLong and FlexDigLong) were 
recorded from extensor digitorum longus (edl) and flexor 
digitorum longus (fdl), respectively. For the low-func-
tioning subject (S2), two surface EMG signals (referred 
as GasMed and GasLat) were recorded from medial gas-
trocnemius (gasmed) and lateral gastrocnemius (gaslat), 
respectively, and a fine-wire EMG signal (referred as 
TensFascLat) was recorded from tensor fasciae latae (tfl). 
Raw EMG data were collected at 1000 Hz and high-pass 
filtered at 40 Hz, demeaned, full-wave rectified, and low-
pass filtered at 3.5/tf Hz, where where tf is the period of 
the gait cycle [17]. Processed EMG data were then nor-
malized to the maximum values across all experimental 
gait cycles. The resulting processed EMG data will hence-
forth be referred to as “experimental muscle excitations” 
[17, 37].

A three-dimensional motion capture system (Vicon 
Corp., Oxford, United Kingdom) operating at 100 Hz was 
used to measure reflective surface marker trajectories, 
while two treadmill force plates (Bertec Corp., Colum-
bus, OH, United States) recording at 1,000 Hz were used 
to measure ground reaction forces and moments. Raw 
motion capture and ground reaction data were low-pass 
filtered with a variable cut-off frequency of 7/tf Hz [38], 
where tf is the period of the gait cycle. Data from ten 
gait cycles (five cycles per speed) per leg were randomly 
chosen to calibrate the EMG-driven models and evaluate 
the accuracy of estimated muscle activations and forces. 
Following pre-processing, data from each gait cycle were 
resampled to 101 time points from heel-strike (0%) to 
subsequent heel-strike (100%) of the same foot. An extra 
20 time frames, accounting for a maximum electrome-
chanical delay of approximately 100  ms, were retained 
prior to the start of each gait cycle, yielding 121 time 
points for each of the 10 gait cycles.

Musculoskeletal model creation
A generic full-body OpenSim musculoskeletal model [39] 
was used as the starting point to create a personalized 
model of each subject. This generic model possessed 37 
degrees of freedom (DOFs), 80 muscle–tendon actuators 
to control lower limb motion, and 17 ideal torque actua-
tors to control the upper body motion. For each subject, 
a sequence of four analyses was performed using Open-
Sim 4.0 [40, 41] to prepare the model for EMG-driven 
modeling with SynX. First, OpenSim model scaling was 
performed using motion capture data collected while the 

subject stood in a static pose, allowing the generic mod-
el’s anthropometry to match that of each subject more 
closely. Second, repeated OpenSim inverse kinematics 
(IK) analyses were performed within a nonlinear optimi-
zation to calibrate the locations and orientations of lower 
body joint centers and axes such that errors between 
model and experimental surface marker positions were 
minimized for isolated joint motion and walking trials 
[42]. The lower body DOFs affected by this calibration 
process were hip flexion/extension (HipFE), hip adduc-
tion/abduction (HipAA), hip internal/external rotation 
(HipRot), knee flexion/extension (KneeFE), ankle plan-
tarflexion/dorsiflexion (AnklePD), and ankle inversion/
eversion (AnkleIE). These six low-extremity DOFs were 
targeted because their associated experimental joint 
moments were needed for performing SynX and SO. 
Third, additional OpenSim IK analyses were performed 
using experimental marker data from the walking trials 
to obtain joint angle time histories. Fourth, OpenSim 
inverse dynamic (ID) analyses were performed using the 
previously calculated joint kinematics and the experi-
mental ground reaction data from the walking trials to 
calculate experimental joint moments.

Muscle activation and force estimation
As illustrated in Fig. 2, both SynX and SO follow a four-
phase process to generate accurate estimations of muscle 
activations and forces, which are outlined as follows: (1) 
In the case of SynX, the control inputs to the muscle–ten-
don models consist of muscle excitations, which involve 
processed experimental EMG data for “measured” mus-
cles and SynX-estimated muscle excitations for unmeas-
ured muscles.  Muscle excitations are typically passed 
through an activation dynamics model to determine 
muscle activations. In the case of SO, the muscle–ten-
don models are directly controlled by muscle activations. 
Detailed information can be accessed in the sections 
titled “Muscle activation estimation” for SynX and “Static 
Optimization Solution Process” for SO; (2) Taking mus-
cle activations as inputs, both approaches estimate mus-
cle forces through a geometric musculoskeletal model 
driven by Hill-type muscle–tendon models. The physical 
musculoskeletal models provide muscle–tendon lengths 
based on joint kinematics, while the Hill-type models 
describe the physiology of muscle force generation. Addi-
tional insights can be found in the sections titled “Mus-
cle force estimation” for SynX and “Static Optimization 
Solution Process” for SO; (3) Subsequently, the net joint 
moments are computed by aggregating the force contri-
butions from all muscles across the specific DOF, which 
involves multiplying muscle forces by corresponding 
moment arms derived from the physical models based on 
joint angle histories. Detailed explanations are available 
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in the sections titled “Joint moment calculation” for SynX 
and “Static Optimization Solution Process” for SO; (4) 
Last but not least, the estimated net joint moments 
are iteratively compared to the inverse dynamic joint 
moments through an optimization process. This itera-
tive comparison leads to the estimation of a time-invar-
iant muscle activation model, muscle–tendon model, 
and SynX-specific parameter values for SynX, as well as 
time-varying muscle activations for SO. Further details 
are provided in the sections titled “EMG-driven model 

calibration with SynX” for SynX and “Static Optimization 
Solution Process” for SO.

Synergy extrapolation solution process
SynX constructs unmeasured muscle excitations by mul-
tiplying time-varying muscle synergy excitations extracted 
from “measured” EMG signals by time-invariant synergy 
vector weights associated with “unmeasured” EMG signals. 
SynX was integrated into the framework of EMG-driven 
model calibration process, enabling the “unmeasured” 

Fig. 2  Workflow for EMG-driven modeling with SynX (left panel with green background) and SO (right panel with orange background) 
as performed in this study. Both methods use experimental joint kinematics and moments as inputs and calculate muscle activations and forces 
such that predicted net joint moments from the musculoskeletal model closely match experimental net joint moments from inverse dynamics. 
However, notable differences exist in the optimization problem formulations for these two methods. For EMG-driven modeling with SynX, 
the design variables were time-invariant model parameter values and SynX variables, with the optimization problem being solved across all 
time frames together. In contrast, for SO, the design variables were time-varying muscle activations, typically utilizing model parameter values 
from scaled generic models or literature references, with the optimization problem being solved for each time frame separately. Muscle activations 
found by both approaches were used to estimate muscle forces and their respective contributions to net joint moments
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synergy vector weights to be determined as optimization 
design variables. This complex process involves using joint 
kinematics and associated musculoskeletal geometries 
(such as muscle–tendon lengths and moment arms) as 
inputs to sequentially estimate muscle activations, forces, 
and net joint moments. The estimated predicted net joint 
moments are iteratively compared to the inverse dynamic 
joint moments through an optimization process, result-
ing in the estimation of the time-varying muscle activa-
tions and forces, along with time-invariant musculoskeletal 
model and SynX-related parameter values. The SynX solu-
tion process involved four sequential steps as summarized 
below.

Step 1: Muscle activation estimation
For the first task of the SynX solution process, muscle 
activations were found for muscles with and without 
experimental EMG data. The transformation of “meas-
ured” muscle excitations into activations of all muscles 
served as the core of the SynX solution process [33, 34]. 
First, muscle excitations emusc

m (t) for each muscle with 
experimental EMG data were scaled using a muscle-
specific scale factor ranging from 0.05 to 1. These EMG 
scaling factors were strategically incorporated into the 
muscle activation model calibration process to ensure 
that the magnitude of muscle excitations is appropriately 
normalized. This normalization is crucial for accurate 
muscle force estimations, as required by the Hill-type 
model in Eq. (6), which specifies that muscle activations 
must fall within the predefined range of 0 to 1. Acknowl-
edging that actual maximum activation levels tend to 
surpass those observed experimentally during walking 
and recognizing that peak EMGs, even if identified from 
maximal voluntary contraction (MVC) trials, may not 
entirely capture the complete extent of muscle activation 
due to inherent limitations in capturing spatial variabil-
ity [43], we chose to allow the optimization process to 
iteratively adjust the scaling factors, and this data-driven 
approach enabled us to determine the normalized muscle 
activations, unhindered by the constraints of empirical 
MVC-based normalization methods. Second, to center 
the data and eliminate any bias due to varying means in 
the original muscle excitations, the mean of each scaled 
measured muscle excitation was subtracted from the 
original dataset before conducting muscle synergy analy-
sis (MSA) using principal component analysis (PCA) to 
extract a small number of muscle synergies, specifically 
five for the present study:

where Wm(t) specifies the time-varying measured syn-
ergy excitations, Hm specifies the associated time-invar-
iant measured synergy vector weights, µm stands for the 

(1)emusc
m (t) = Wm(t)Hm + µm + εm(t)

average values of each measured muscle excitation, and 
εm(t) stands for the decomposition residuals that could 
not be accounted for by Wm(t)Hm + µm . Following 
MSA, both unmeasured muscle excitations emusc

SynX (t) and 
residual muscle excitations eres(t) added to the measured 
muscle excitations were constructed from the measured 
synergy excitations:

where HSynX represents the unmeasured synergy vec-
tor weights,µSynX represents the average values of each 
unmeasured muscle excitation, Hres represents the 
residual synergy vector weights, and µres represents the 
average values of each residual muscle excitation. Hence-
forth, we denote the union of HSynX , µSynX , Hres and µres 
as SynX design variables, which were all time-invariant 
and determined through an optimization process imple-
mented within the EMG-driven model calibration pro-
cess (Fig.  2). Once unmeasured and residual muscle 
excitations were constructed, two sets of muscle excita-
tions were calculated when residual muscle excitations 
were and were not included:

where emusc(t) defines the muscle excitations with-
out residual muscle excitations included, while emusc

res (t) 
defines the muscle excitations with residual muscle exci-
tations included. Both emusc(t) and emusc

res (t) were utilized 
in subsequent steps to compute corresponding muscle 
activations denoted as amusc(t) and amusc

res (t) , respectively. 
Third, neural activations umusc(t) were determined from 
constructed muscle excitations by employing a first-order 
ordinary differential equation for activation dynamics 
[44]:

where τact and τdact are activation and deactivation time 
constants, and d specifies the electromechanical time 
delay. Fourth, a nonlinear one-parameter transformation 
model was utilized to compute each associated muscle 
activation amusc(t) [45]:

(2)
{

emusc
SynX (t) = Wm(t)HSynX + µSynX

eres(t) = Wm(t)Hres + µres

(3)







emusc(t) =
�

emusc
m (t), emusc

SynX (t)
�

emusc
res (t) =

�

emusc
m (t)+ eres(t), emusc

SynX (t)
�

(4)

dumusc(t)

dt
= (c1e

musc(t − d)+ c2)(e(t − d)− u
musc(t))

c1 = 1/τact − 1/τdact

c2 = 1/τdact

τdact = 4τact
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where c3 is an activation nonlinearity constant that char-
acterizes the curvature of the relationship of each muscle, 
and g1 to g5 are constant coefficients obtained by fitting 
published experimental data from isometric contractions 
[45]. Our EMG-driven modeling approach solves for mus-
cle activations with (i.e., amusc

res (t) ) or without (i.e., amusc(t) ) 
residual excitations included over all time frames simulta-
neously by adjusting of the following design variables: SynX 
design variables, EMG scale factors, electromechanical time 
delays, activation time constants, and activation nonlinearity 
constants. Further details are provided in the section entitled 
“EMG-driven model calibration with SynX”.

Step 2: Muscle force estimation
For the second step of the SynX solution process, muscle 
forces were estimated using the activations for measured 
and unmeasured muscles found in the first task. Taking 
the estimated muscle activations as inputs, our EMG-
driven modeling process employed a Hill-type muscle 
tendon model with rigid tendon [17, 27, 46] to predict 
the force generated by a given muscle–tendon actuator 
m , which was formulated as (Fig. 2):

where f al (l̃
musc(t, θ)) and f av (ṽ

musc(t, θ , θ̇ )) describe 
the normalized active muscle force–length and force–
velocity relationships, respectively, f pl (l̃

musc(t, θ)) defines 
the normalized passive muscle force–length relationship, 
l̃musc(t, θ) and ṽmusc(t, θ , θ̇ ) denote the time-varying 
normalized muscle fiber length and velocity, respectively, 
Fmusc(t, θ , θ̇ ) and amusc(t) denote the muscle force and 
muscle activation generated by the muscle–tendon 
actuator at time t , Fm

o  is the maximum isometric force, α 
is the pentation angle of the muscle (values of which were 
taken from literature [47]), lmo  denotes optimal muscle 
fiber length, and lts denotes tendon slack length. These 
values (apart from pennation angles) were calibrated 
through an optimization process. More details regarding 
the determination of lmo  and lts values for each muscle 
force estimation method can be found in the section 
entitled “EMG-driven model calibration with SynX”.

(5)
amusc(t) = (1− c3)u

musc(t)

+ c3

[

g1

g2(umusc(t)+ g3)g4 + g5
+ 1

]

(6)

Fmusc(t, θ , θ̇ ) = Fm
o ·

[

amusc(t) · f al (l̃
musc(t, θ)) · f av (ṽ

musc(t, θ , θ̇ ))+ f
p
l (l̃

musc(t, θ))
]

· cosα

l̃musc(t, θ) =
lmt(t, θ)− lts

lmo

ṽmusc(t, θ , θ̇ ) =
vmt(t, θ , θ̇ )

10 · lmo

Step 3: Joint moment calculation
For the third step of the SynX solution process, model net 
joint moments were calculated using the forces for meas-
ured and unmeasured muscles found in the second task. 
Once the muscle forces Fmusc(t, θ) were estimated, their 
contributions to the net joint moment at each joint j were 
calculated using the corresponding muscle moment arms:

where Mjoint(t, θ , θ̇ ) is net joint moment at time t pro-
duced by all spanning muscles spanning the joint, and 
rmusc(t, θ) is the muscle moment arm for muscle m at 
time t , which was defined as the negative of the par-
tial derivative of muscle–tendon length lmt(t, θ) with 
respect to generalized coordinate θ [48]. The negative 
sign in Eq. 8 was implemented for consistency with the 
OpenSim modeling environment. When utilizing SynX 
for estimating unmeasured muscle excitations, net joint 
moments were computed with ( Mjoint

res (t, θ , θ̇ ) ) and with-
out ( Mjoint(t, θ , θ̇ ) ) inclusion of residual excitations in the 
measured muscle excitations, as stipulated by the cost 
function for EMG-driven model calibration.

Step 4: EMG‑driven model calibration with SynX
For the fourth step of the SynX solution process, the 
first three tasks were performed iteratively within a 
nonlinear optimization that adjusted three categories of 
design variables (see Fig. 2): (1) SynX parameter values 
including synergy vector weights and average values 
associated with unmeasured muscle excitations as well 
as synergy vector weights and average values associated 
with residual muscle excitations; (2) activation 
dynamics model parameter values consisting of EMG 
scale factors, electromechanical delays, activation 
time constants, and activation nonlinearity constants; 
and (3) muscle–tendon model parameter values 
consisting of optimal muscle fiber lengths and tendon 
slack lengths. EMG-driven model calibration typically 
adjusts muscle forces by altering muscle–tendon 
model parameter values such that the differences 

(7)Mjoint(t, θ , θ̇ ) =
∑

Fmusc(t, θ , θ̇ ) · rmusc(t, θ)

(8)rmusc(t, θ) = −
∂lmt(t, θ)

∂θ
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between model-predicted and inverse dynamic (ID) 
joint moments are minimized. However, to estimate 
unmeasured muscle excitations via SynX during EMG-
driven model calibration, the primary cost function was 
formulated as a trade-off between minimizing net joint 
moment tracking errors and minimizing unmeasured 
and residual muscle activation magnitudes [34]:

where M
joint
res (t, θ , θ̇ ) refers to model-predicted joint 

moments when residual muscle excitations are included 
in net joint moment calculations, Mjoint(t, θ , θ̇ ) refers 
to model-predicted joint moments when residual mus-
cle excitations are excluded in net joint moment calcu-
lations, MID(t, θ , θ̇ ) refers to inverse dynamic net joint 
moments obtained from OpenSim ID analyses, amusc

SynX (t) 
represents unmeasured muscle activations estimated 
by SynX, and ares(t) signifies residual muscle activa-
tions added to the measured muscle activations, which 
are equivalent to amusc

res (t)− amusc(t) . Normalization 
of all four cost function terms was achieved using a set 
of maximum allowable deviations (MAD), the values 
of which were determined by performing a sensitivity 
analysis as described in [34]. Further details regarding 
initial guesses, upper/lower bounds for design variables, 
additional inequality constraints, and penalty terms can 
be found in previously published studies [17, 33, 34]. All 
optimization procedures were performed using MAT-
LAB’s "fmincon" nonlinear optimization function with its 
sequential quadratic programming algorithm.

Static optimization solution process
The static optimization solution process involved 
determining muscle activations amusc(t) at each time 
instant t by performing an inverse dynamics-based 
optimization. In the standard SO approach, the mus-
cle redundancy problem is addressed by minimizing 
the energetic cost represented by the sum of squares of 
muscle activations while ensuring that inverse dynamic 
joint moments are matched perfectly at the solution 
[20]:

(9)

min J �
∑

(

M
joint

res (t, θ , θ̇ )−MID(t, θ , θ̇ )

MAD1

)2

+
∑

(

Mjoint (t,θ ,θ̇ )−MID(t,θ ,θ̇ )
MAD2

) 2

+
∑

(

amusc
SynX (t)

MAD3

)2

+
∑

(

ares(t)
MAD4

) 2

The net joint moments for SO were calculated by sub-
stituting the estimated muscle activations amusc(t) into 
the Hill-type muscle–tendon model and multiplying the 
resulting muscle forces by their corresponding moment 
arms, as depicted in Eqs. 6 through 8. In contrast to the 
EMG-driven modeling method, the muscle activations 
estimated for SO were used directly as design variables 
in the optimizations, which were solved individually for 
each time frame. Furthermore, model parameter val-
ues were taken from the scaled generic OpenSim model 
rather than being calibrated during the optimization 
process.

Synergy extrapolation and static optimization evaluation
Muscle selection heuristics
Given 16 measured muscle excitations for each leg of 
both subjects, we had to choose 8 muscle excitations to 
be treated as measured and 8 to be held back and treated 
as missing for SynX and SO evaluation purposes. A prior 
study [32] provided guidance for which eight muscles to 
select as measured and which eight to select as missing 
so as to maximize reconstruction accuracy for the eight 
missing muscle excitations. In that study, an investigation 
of all possible combinations of eight measured and 
eight missing EMG signals yielded the following muscle 
selection heuristic: (1) Choose muscles easily accessible 
by surface EMG electrodes; (2) Choose most frequently 
occurring muscle in the top 10% of muscle combinations 
that yielded the highest SynX accuracy from each 
primary lower extremity function group; (3) Choose two 
hip/knee biarticular muscles at minimum; (4) Choose 
remaining most frequent muscles to fill eight muscle 
combinations. Following this muscle selection heuristic, 
given a limited number of eight EMG channels, indicated 
that researchers should collect surface EMG data from 
commonly chosen uniarticular and biarticular flexor 
and extensor muscles from each major muscle group, 
as illustrated in Fig. 1. The selected uniarticular muscles 
included a hip extensor (GlutMax), a knee extensor 
(VasLat considered preferable over VasMed), an ankle 
plantarflexor (Sol), and an ankle dorsiflexor (TibAnt). 
Uniarticular hip flexors (Iliacus and Psoas) were omitted 
due to the difficulty in measuring these muscles with 
surface electrodes. The chosen biarticular muscles 
included a posterior thigh muscle (SemiMembTen, or 
Bicfem) and a posterior calf muscle (GasMed or GasLat). 

(10)

for time frame t :

min J =
∑

amusc(t)2

subject to

Mjoint(t, θ , θ̇ )−MID(t, θ , θ̇ ) = 0

0 ≤ amusc(t) ≤ 1
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Additionally, adding GlutMedMin to the list appeared to 
be a reasonable choice if one more muscle was needed.

Synergy extrapolation methodological choices
Implementation of SynX requires making several meth-
odological choices that can impact the accuracy of esti-
mated muscle activations and forces. Using the same two 
experimental data sets, previous studies investigated the 
influence of various methodological choices on SynX 
performance [33, 34], including EMG normalization 
methods, matrix decomposition algorithms, the num-
ber of muscle synergies, and assumptions regarding the 
variability of synergy vector weights across trials for the 
reconstruction of unmeasured and residual muscle exci-
tations. Those studies systematically assessed the results 
for all possible methodological combinations and found 
that principal component analysis (PCA) with either 
five or six synergies consistently predicted unmeasured 
muscle excitations with reasonable accuracy. In con-
trast, non-negative matrix factorization (NMF) did not 
achieve acceptable prediction accuracy. Additionally, for 
the same number of synergies, employing trial-specific 
unmeasured synergy vector weights and speed-specific 
residual synergy vector weights resulted in optimal SynX 
performance for both subjects in terms of estimation 
accuracy and computational efficiency. Notably, EMG 
normalization had no significant impact on SynX perfor-
mance. Thus, the key methodological choices for SynX 
were informed by insights from prior studies, as detailed 
in Table 1. 

Optimization problems
The present study had three primary objectives that 
influenced the optimization problems that were formu-
lated and solved. First, the study aimed to evaluate the 
performance of SynX when treating multiple channels 
of EMG data (i.e., eight) as “unmeasured.” Second, the 
study sought to compare estimates of muscle activations 
and forces from SynX and SO with those from a “gold 
standard” reference. Third, the study aimed to analyze 

the accuracy of estimated unmeasured muscle activa-
tions and forces from both SynX and SO when using 
model parameter values associated with different levels 
of personalization.

To address these primary objectives, we formulated six 
optimization problems to estimate unmeasured muscle 
activations and, for SynX, to calibrate model parameter 
values (Fig.  3). The first optimization problem (termed 
“ Params ”) utilized all 16 channels of EMG data to cali-
brate each EMG-driven musculoskeletal model, provid-
ing “gold standard” muscle activations and forces for 
evaluation. The second optimization problem (termed 
“ SynXUnmeasured + Params ”) assessed the performance 
of SynX when multiple channels of EMG data (i.e., eight) 
were considered “unmeasured.” This optimization prob-
lem calibrated EMG-driven models (including activation 
dynamics model, muscle–tendon model, and SynX vari-
able values) for each leg of each subject while simultane-
ously estimating missing muscle excitations using SynX. 
The third optimization problem (termed “ SynXParams

Unmeasured
 ”) 

employed SynX to estimate the unmeasured muscle 
excitations within a well-calibrated EMG-driven model 
utilizing the model parameter values found in the “gold 
standard ( Params)” optimization. The fourth optimiza-
tion problem (termed “ SOGeneric

All
 ”) used SO to estimate 

muscle activations for all muscles using muscle–ten-
don model parameter values taken from scaled generic 
OpenSim models, representing the most commonly for-
mulated SO method. The fifth and sixth optimization 
problems (termed “ SOParams

All
 ” and “ SOParams

Unmeasured
 ”) utilized 

SO to estimate muscle activations for all muscles and 
only unmeasured muscles, respectively, using model 
parameter values from the “gold standard” ( Params) opti-
mization. When performing the fourth and sixth opti-
mizations SynXParams

Unmeasured
 and SOParams

Unmeasured
 to estimate only 

unmeasured muscle excitations/activations, the muscle 
activations of the measured muscles were taken from the 
“gold standard” ( Params) optimization.

Table 1  Methodological choices for synergy extrapolation

Description Methods (Abbreviations)

Matrix factorization algorithm Principal component analysis (PCA)

EMG normalization method Maximum value over all trial

Number of muscle synergies 5

Category of unmeasured synergy vector weights Trial-specific

Category of residual synergy vector weights Speed-specific

Number of missing EMGs 8

Number of measured EMGs 8
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Evaluation metrics and statistical analyses
Several common evaluation metrics were used to 
evaluate the ability of SynX and SO to estimate muscle 
activations and forces for unmeasured muscles as well 
as net joint moments across all cases. First, root mean 
square errors (RMSEs) were computed to quantify 
magnitude errors between experimental (from “ Params ” 
case) and predicted (from two SynX and three SO 
cases) muscle activations and forces. Similarly, Pearson 
correlation coefficients (r) were computed to quantify 
shape similarity between experimental and predicted 
unmeasured muscle activations and forces. Correlations 
were categorized as weak (r < 0.35), moderate 
(0.35 < r ≤ 0.67), strong (0.67 < r ≤ 0.9), or very strong 
(r ≤ 0.9) [49]. Furthermore, mean absolute errors (MAEs) 
between model and experimental net joint moments were 
also calculated for the “Params” case and the two SynX 
cases “ SynXUnmeasured + Params ” and “ SynXParams

Unmeasured
.” 

Evaluation metrics, including RMSEs, r values, and MAE 
values, were calculated by concatenating the data across 
all calibration trials and legs of both subjects.

Multiple statistical analyses were performed to com-
pare the evaluation metrics resulting from different SynX 
and SO cases. Paired t-tests were performed on RMSE 
and r values to identify significant differences in the 
accuracy of estimated unmeasured muscle activations 
between any two of the five SynX or SO cases. Paired 
t-tests were also used to identify significant differences in 
the accuracy of estimated muscle forces between any two 
of the five SynX or SO cases. In addition, paired t-tests 
were performed to compare joint moment matching 
errors (MAE values) between the “Params” case and the 
two SynX cases. All statistical analyses were performed 
in MATLAB with a significance level of p < 0.05.

Results
Muscle activations
Muscle activations for unmeasured muscles esti-
mated using SynX and SO were compared with those 
produced by EMG-driven model calibration using 
a complete set of EMG data (“Params ”) (Figs.  4 and 
5, Table  2). When SynX was used with simultane-
ous calibration of EMG-driven model parameter 

Fig. 3  Summary of six optimization problems investigated in this study. Two optimizations used SynX to predict unmeasured muscle excitations 
(termed SynXUnmeasured + Params and SynXParams

Unmeasured
 ), three optimizations used static optimization (SO) to predict unmeasured muscle activations 

(termed SOGeneric

All
 , SOParams

All
 and SOParams

Unmeasured
 ), and one “gold standard” optimization used the complete set of EMG signals with no muscle excitations 

predicted by SynX or SO (termed Params ). The calibration cases were named based on the prediction method for unmeasured muscle excitations 
or activations as well as the categories of design variables included in the optimization problem formulation. The subscripts indicate which 
set of muscle excitations or activations were predicted computationally, while the superscripts indicate which set of model parameters were 
employed for calculating muscle activations and forces. In each column of the optimizations, the arrows indicate whether each group of muscle 
excitations or activations were predicted or obtained experimentally as well as which values were used if model parameters were not calibrated 
through optimization. The term “Scaled Generic” denotes scaled generic model parameter values, while “From Params” refers to the model 
parameter values derived from the “gold standard” (Params) optimization
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values (“SynXUnmeasured + Params”), activations for 
unmeasured muscles were estimated with low RMSE 
values (0.08 ± 0.06, maximum value ≤ 0.17) and mod-
erate to strong correlation r values (0.55 ± 0.13, mini-
mum value ≥ 0.38) across most muscles compared 
to “gold  standard” muscle activations (“Params”). 
Among unmeasured muscles, SynX exhibited supe-
rior performance for superficial muscles (e.g. rectus 
femoris, lateral gastrocnemius and vastus interme-
dius) compared to deep muscles (e.g. iliacus, exten-
sor digitorum longus and tibialis activations for hip 
adductors (RMSE = 0.01, r ≥ 0.43) and flexor digi-
torum longus (RMSE = 0.05, r = 0.92), which are 
deep muscles, maintained comparable accuracy to 
that of superficial muscles. SynX with simultaneous 
calibration of EMG-driven model parameter values 
(“SynXUnmeasured + Params ”) produced significantly 
more accurate predictions of unmeasured muscle acti-
vations compared to standard SO with scaled generic 
parameter values (“SOGeneric

All
”). This finding was evi-

dent in terms of both magnitude (characterized by 
RMSE values, p ≤ 0.05) and shape (characterized by 
correlation r values, p ≤ 0.05) across unmeasured 
muscles and subjects (Figs.  4 and 5, Table  2). Even 
for muscles with relatively low estimation accuracy 
using both methods, such as iliacus, psoas, and exten-
sor digitorum longus, SynX outperformed stand-
ard SO in reproducing the shape and magnitude of 
unmeasured muscle activations (Table  2). Moreover, 
SO (“SOGeneric

All
 ”) exhibited weak correlations (r ≤ 0.35) 

in the muscle activation predictions for the major-
ity of unmeasured muscles, apart from tibialis poste-
rior (r = 0.53), extensor digitorum longus (r = 0.48), 
and flexor digitorum longus (r = 0.89). Notably, the 
SynX-based optimization generated smooth muscle 
activation profiles for all unmeasured and measured 
muscles, whereas SO generated muscle activation 
profiles with discontinuities and that generally under-
estimated the “gold standard” muscle activations (see 
Fig. 4).  

SynX-based and SO-based methods were both 
sensitive to the level of musculoskeletal model 

personalization (Figs.  4 and 5, Table  2). For 
SynX, using a well-calibrated EMG-driven model 
(“SynXParams

Unmeasured
 ”) yielded lower RMSE values for 

unmeasured muscle activations (0.05 ± 0.05) com-
pared to when SynX variables and EMG-driven model 
parameter values were calibrated simultaneously 
(“SynXUnmeasured + Params ”) (0.08 ± 0.06). Unmeas-
ured muscle activations produced by “ SynXParams

Unmeasured
 ” 

exhibited strong or very strong correlations with those 
generated from by “ Params ” with the exception of the 
extensor digitorum longus (r = 0.42). For SO, well-
calibrated model parameter values in “ SOParams

All
 ” led 

to more accurate estimation of unmeasured muscle 
activations compared to using scaled generic model 
parameter values in “ SOGeneric

All
 ”, although the differ-

ence was not substantial.
When a well-calibrated EMG-driven model was 

used to estimate only unmeasured muscle activations, 
SynX case “ SynXParams

Unmeasured
 ” produced more accurate and 

reliable estimates compared to SO case “ SOParams
Unmeasured

 ”, as 
evidenced by lower RMSE values (p ≤ 0.05) and higher 
correlation r values (p ≤ 0.05) (Figs. 4 and 5, Table 2). 
Similar to all SO-estimated muscle activations, muscle 
activations estimated by SO case “ SOParams

Unmeasured
”generally 

underestimated the “gold standard” muscle activations 
while demonstrating abrupt changes.

Muscle forces
In addition, muscle forces for unmeasured muscles 
estimated using SynX and SO were compared with 
those produced by EMG-driven model calibration 
using a complete set of EMG data (“Params ”) (Figs.  6 
and 7, Table  3). When SynX was used with simulta-
neous calibration of EMG-driven model parameter 
values (“SynXUnmeasured + Params”), forces for unmeas-
ured muscleswere estimated with low RMSE values 
(101.3 ± 90.1) and moderate to strong correlation r val-
ues (0.53 ± 0.17) across most muscles compared to “gold 
standard” muscle forces (“Params”) (Fig. 3 and Table 3). 
Among unmeasured muscles, SynX exhibited superior 
performance for vastus intermedius, vastus medialis, 
flexor digitorum longus, lateral gastrocnemius and a 

(See figure on next page.)

Fig. 4  Average muscle activations for the “unmeasured” muscles (upper) and “measured” muscles (lower) across calibration trials, legs and subjects 
from “Params” optimization (blue solid lines), SynX-based optimizations ( SynXUnmeasured + Params : red solid lines and SynXParams

Unmeasured
 : yellow solid lines) 

and SO-based optimizations ( SynXGeneric
All

 : purple dashed lines, SynXParams

All
 : green dashed lines and SOParams

Unmeasured
:grey dashed lines). Data are reported 

for a complete gait cycle, where 0% indicates initial heel-strike and 100% indicates subsequent heel-strike. For measured muscles, the curves 
associated with SynXParams

Unmeasured
 and SOParams

Unmeasured
 were underneath the curves associated with “Params” since the associated muscle activations were 

taken from the “Params” optimization rather than estimated
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Fig. 4  (See legend on previous page.)
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majority of adductor muscles in terms of both shape and 
magnitude.

RMSE values (101.3 ± 90.1) for SynX case 
“ SynXUnmeasured + Params”were significantly smaller 
(p = 0.028) than those for standard SO case “ SOGeneric

All
 ” 

(174.4 ± 174.4). Furthermore, correlation r values for 
muscle forces between SynX cases full EMG-driven 
model calibration (“Params” case) were moderately 
strong or better across all unmeasured muscles. Con-
versely, for SO, the correlation was generally weak for 
most muscles, except for moderate correlations observed 
for rectus femoris (r = 0.42), lateral gastrocnemius 
(r = 0.51), tibialis posterior (r = 0.48), and extensor digito-
rum longus (r = 0.58) (Table 4).

Model personalization had a considerable influence on 
the accuracy of estimated muscle forces for both SynX 
and SO (Figs.  6 and 7, Table  3). SynX demonstrated 
improved estimation of muscle force shapes (p ≤ 0.05) 
and magnitudes (p ≤ 0.05) when simultaneous calibra-
tion of SynX variables and EMG-driven model param-
eters (“SynXUnmeasured + Params ”) was replaced with 
a well-calibrated EMG-driven model (“SynXParams

Unmeasured
”). 

Similarly, SO benefited from using well-calibrated model 
parameter values in achieving more accurate estimation 
of unmeasured muscle forces, leading to significantly 
different correlation r values between cases “ SOGeneric

All
 ” 

and “ SOParams
All

 ”, while RMSE values remained statistically 
comparable between them.

When model parameter values were taken from 
a full EMG-driven calibration (“Params”), SynX 
(“SynXParams

Unmeasured
 ”) predicted unmeasured muscle forces 

more reliably than did SO (“SOParams
Unmeasured

”(, as evidenced 
by significantly lower RMSE values (p ≤ 0.05) and higher 
correlation r values (p ≤ 0.05).

Model parameters
In general, for measured muscles, the four activation 
dynamics model parameters and two Hill-type mus-
cle–tendon model parameters showed a high degree 
of similarity between the “ SynXUnmeasured + Params

”and “ Params ” cases (Fig.  8, left panel). In contrast, 
for unmeasured muscles, only the two Hill-type mus-
cle–tendon model parameters showed a high degree of 

Fig. 5  p-values obtained from paired t-tests used to compare the estimation accuracy of muscle activations, as indicated by RMSE values (left) 
and r values (right), between different optimizations. Initially, RMSE and r values for muscle activations were calculated between the experimental 
(“Params”) optimization and each of the other optimizations, where results across all calibration trials, legs, and subjects being concatenated 
and displayed in Table 3. Subsequently, the RMSE and r values for muscle activations from each optimization were compared to the results 
from every other optimization to determine the statistical significance of the differences in estimation accuracy between each pair of optimizations. 
All statistical analyses were performed in MATLAB, and the level of statistical significance was set to p < 0.05. A box with green background indicates 
that the estimation performance for the y-axis optimization was significantly better (lower RMSE values or higher r values) than for the x-axis 
optimization, while a box with grey background indicates that the estimation performance for the y-axis optimization was significantly worse 
(higher RMSE values or lower r values) than for the x-axis optimization
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similarity between the “ SynXUnmeasured + Params”and 
“ Params ” cases (Fig.  8, right panel). The four activation 
dynamics model parameters exhibited substantial dif-
ferences for unmeasured muscles between SynX case 
“ SynXUnmeasured + Params ” and the full EMG-driven 
model calibration case “ Params”.

Discussion
This study evaluated the ability of synergy extrapolation 
(SynX) to perform concurrent estimation of a large 
number of unmeasured muscle excitations and parameter 
values in an EMG-driven model. The approach was 
evaluated using gait datasets collected from two post-
stroke subjects performing treadmill walking at self-
selected and fastest-comfortable speeds. EMG signals 
measured from eight muscles bilaterally were treated as 
“unmeasured” and estimated using synergy information 
extracted from EMG signals measured from another 
eight muscles bilaterally that were treated as “measured.” 
The muscle activations, forces, and model parameter 
values for the unmeasured muscles were quantitatively 
compared to “gold standard” values obtained when all 16 
channels of EMG data were used to calibrate an EMG-
driven musculoskeletal model for each leg of each subject. 
The results revealed that the estimated unmeasured 
muscle activations and forces were reasonably accurate 
and reliable in term of both shape and magnitude (Figs. 4 
and 6, Tables  2 and 3). Moreover, Hill-type muscle–
tendon model parameter values for both unmeasured and 
measured muscles, including optimal fiber length and 
tendon slack length, exhibited a high level of agreement 
with “gold standard” model parameter values (Fig.  8). 
When SO estimates of unmeasured muscle activations 
and forces were compared with SynX estimates, the SynX 
results were more accurate and realistic than those from 
SO (Figs. 4 and 6, Tables 2 and 3), which contained abrupt 
changes and tended to underestimate the unmeasured 
muscle quantities. When the sensitivity of estimated 
unmeasured muscle activations and forces to the level of 
model personalization was investigated, both SynX and 
SO generated more accurate estimates when utilizing 
well-calibrated muscle–tendon model parameters. 
However, SynX demonstrated superior performance to 
SO in estimating unmeasured muscle activations and 

forces when employing model parameter values from full 
EMG-driven model calibration.

Several factors help explain why SynX demonstrated 
superior performance over SO. First, by utilizing 
measured synergy excitations as building blocks, SynX 
reduced the problem of finding unknown time-varying 
muscle excitations to identifying a small number of 
unmeasured synergy vector weights. This simplification 
led to a substantial reduction in the search space for the 
optimization in comparison with SO-based approaches 
[33]. Second, unlike SO-based approaches, which solve 
for muscle activations one time frame at a time, the 
dependence between time frames in weighted synergy 
excitations resulted in continuous muscle activations, 
improving the physiological plausibility of muscle 
excitation estimates. Third, the time-invariance of 
unmeasured and residual synergy vector weights enabled 
a single-layer optimization process, simultaneously 
achieving EMG-driven model personalization and 
muscle activation estimation, which enhanced the 
accuracy of muscle force estimation. Fourth, calibration 
of synergy-structured residual muscle excitations 
was integrated into SynX to enhance the accuracy 
of predicted unmeasured muscle excitations. Unlike 
SO, SynX introduced residual muscle excitations to 
prevent missing muscle excitations from compensating 
for errors in measured muscle excitations, improving 
solution accuracy as a consequence [34]. Fifth, SynX-
based methods minimized muscle activations only 
for unmeasured muscles whereas SO-based methods 
minimized muscle activations, and thus co-activation 
between agonist and antagonist muscles, for all muscles 
[24, 50]. Last, the SynX-based methods leveraged the 
concept of muscle synergies, making the method more 
physiological reasonable [51, 52].

Compared to other computational methods, SynX 
offers benefits for estimating missing EMG signals within 
[19, 53–55] or outside [56–58] the context of musculo-
skeletal modeling. One published computational method 
used Gaussian process regression models to describe 
the synergistic relationship between a subset of muscles, 
which enabled estimation of unmeasured muscle excita-
tions using information provided by a subset of measured 
muscle excitations [57]. However, the muscle excitations 

(See figure on next page.)
Fig. 6  Average muscle forces for the “unmeasured” muscles (upper) and “measured” muscles (lower) across calibration trials, legs and subjects 
from “Params” optimization (blue solid lines), SynX-based optimizations ( SynXUnmeasured + Params : red solid lines and SynXParams

Unmeasured
 : yellow solid lines) 

and SO-based optimizations ( SynXGeneric
All

 : purple dashed lines, SynXParams

All
 : green dashed lines and SOParams

Unmeasured
:grey dashed lines). Data are reported 

for a complete gait cycle, where 0% indicates initial heel-strike and 100% indicates subsequent heel-strike. For measured muscles, the curves 
associated with SynXParams

Unmeasured
 and SOParams

Unmeasured
 were underneath the curves associated with “Params” since the associated muscle activations were 

taken from the “Params” optimization rather than estimated
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Fig. 6  (See legend on previous page.)
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associated with “unmeasured” muscles must be known for 
conducting the required model training process, render-
ing this method infeasible when the “unmeasured” muscle 
excitations are truly unmeasured due to experimental or 
safety considerations. A second published computational 
method employed low-dimensional sets of impulsive exci-
tation primitives to estimate unmeasured muscle excita-
tions [19, 53, 54]. Each muscle is assigned to a module by 
evaluating associated weighting factors for the excitation 
primitives derived from measured muscle excitations. 
Muscles without EMG signals are assumed to belong to 
the same module as measured muscles that share the 
same innervation and contribute to the same mechani-
cal action. The primitive-driven excitations for measured 
muscles are then minimally adjusted to improve joint 
moment estimation in EMG-assisted models. However, 
these adjustments mask the omission of active force gener-
ating properties for some unmeasured muscles (i.e., iliacus 
and psoas), resulting in noticeable hip joint moment pre-
diction errors. A third published computational method 
used hybrid EMG-informed models that incorporate SO 

to determine unmeasured muscle activations [22, 23]. That 
study also allowed minimal adjustments of measured mus-
cle activations while predicting missing EMG signals (e.g., 
from iliacus and psoas) using SO [22]. A final published 
computational method –the computed muscle control 
(CMC) algorithm within OpenSim – solves for the mus-
cle excitations needed to achieve the desired accelerations 
for tracking an experimental motion [55, 59–61]. How-
ever, CMC has been observed to generate different muscle 
activation and force solutions depending on the point in 
time at which the simulation is started [55]. None of these 
studies provided evidence that estimation of unmeasured 
muscle activations was reliable and in reasonable agree-
ment with experimental measurements. Furthermore, due 
to the nature of SO, the resulting muscle activations are 
likely to exhibit unrealistic discontinuities. All in all, EMG-
driven modeling method with SynX provides an enhanced 
approach for estimating unmeasured muscle activations 
and forces in an efficient manner without requiring a 
priori knowledge of the “unmeasured” muscle excitations 
during a model training phase.

Fig. 7  p-values obtained from paired t-tests used to compare the estimation accuracy of muscle forces, as indicated by RMSE values (left) 
and r values (right), between different optimizations. Initially, RMSE and r values for muscle forces were calculated between the experimental 
(“Params”) optimization and each of the other optimizations, where results across all calibration trials, legs, and subjects being concatenated 
and displayed in Table 3. Subsequently, the RMSE and r values for muscle forces from each optimization were compared to the results from every 
other optimization to determine the statistical significance of the differences in estimation accuracy between each pair of optimizations. All 
statistical analyses were performed in MATLAB, and the level of statistical significance was set to p < 0.05. A box with green background indicates 
that the estimation performance for the y-axis optimization was significantly better (lower RMSE values or higher r values) than for the x-axis 
optimization, while a box with grey background indicates that the estimation performance for the y-axis optimization was significantly worse 
(higher RMSE values or lower r values) than for the x-axis optimization
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Personalized muscle–tendon model parameters have 
the potential to significantly enhance the accuracy of 
estimating muscle activations and forces, utilizing both 
SynX and SO approaches. For SynX, tracking errors 
between the estimated and experimental estimates of 
muscle activations were reduced substantially when 
muscle–tendon model parameter values were pre-per-
sonalized for case “ SynXParams

Unmeasured
 ”. Consequently, mean 

correlations between estimated and experimental mus-
cle activations were also substantially increased, mov-
ing from moderate to strong. Additionally, compared 
to case “ SynXUnmeasured + Params ”, net joint moment 
matching errors for case “ SynXParams

Unmeasured
 ” were closer to 

those obtained from full EMG-driven model calibration 
case “ Params ”. For SO, consistent with previous studies 
[62], personalization of muscle–tendon model param-
eters produced noticeable improvements in estimated 
muscle activations and forces in terms of both shape and 
amplitude for case “ SOParams

All
 ”, with statistically signifi-

cant improvements observed for only the shape of mus-
cle forces. These observations suggest that enhancing the 
level of model personalization generally improves the 
accuracy of muscle activation estimation, consistent with 

a previous study demonstrating that model personaliza-
tion also improves the accuracy of knee contact force 
estimation [47]. Despite these observations, significant 
variations existed in the degree of improvement among 
different optimization approaches. In scenarios where a 
well-calibrated musculoskeletal model is available, SynX 
has the ability to predict muscle activations for muscles 
lacking EMG data with reasonable amplitude and shape, 
whereas SO can predict unmeasured muscle activations 
with reasonable amplitude but not shape. Even though 
SynX started with the same scaled generic model as used 
by SO, it predicted unmeasured muscle activations with 
reasonably accurate amplitude and shape, which SO did 
not achieve.

Net joint moment matching errors were also found 
to differ among the different optimization approaches 
(Figure S3 and Table  S3). First, inverse dynamics (ID) 
and estimated net joint moments exhibited much 
closer agreement in the SO-based optimizations 
(“SOGeneric

All
 ”, “ SOParams

All
 ”, and “ SOParams

Unmeasured
 ”) than in 

the EMG-driven modeling optimizations (“Params ”, 
“ SynXUnmeasured + Params ”, and “ SynXParams

Unmeasured
”). The 

optimization formulation used by SO in Eq. (10) resulted 

Fig. 8  EMG-driven model parameter values for two legs of both subjects from “ SynXUnmeasured + Params ” optimization (in orange) and “gold 
standard (Params)” optimization (blue bars). The upper and lower bounds during optimization for each of the four activation dynamics model 
parameters have been indicated by grey dash-sot lines, where the upper and lower bounds for the scaling factors of optimal fiber lengths 
and tendon slack lengths were [0.6, 1.4] for all muscles
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in negligible joint moment matching errors. However, the 
additional constraints within EMG-modeling methods, 
including muscle activation dynamics and dependency 
of EMG signals between time frames, limited the torque-
generating capacity of muscles, thereby preventing 
more precise reproduction of joint moments. Second, 
joint moment matching errors, arranged in descending 
order, for optimizations associated with the EMG-driven 
modeling method are “ Params ”, “ SynXParams

Unmeasured
 ”, and 

“ SynXUnmeasured + Params ”. This observation can be 
explained by the increasing number of design variables, 
and thus the increasing freedom, in the optimization 
problem formulations. Specifically, “ Params ” uses the 
fewest design variables, “ SynXParams

Unmeasured
 ” adds SynX 

design variables, and “ SynXUnmeasured + Params ” 
further adds EMG-driven model design variables, with 
each addition enabling the optimizer to reduce the joint 
moment matching errors further. This observation also 
helps explain why joint moment matching errors were 
smaller when estimating 8 channels of unmeasured EMG 
signals in the present study compared to estimating 
only two channels of unmeasured EMG signals (i.e., 
iliacus and psoas) in a previous study that used the same 
datasets [34]. Last, regardless of the numbers of muscle 
activations to estimate, SO consistently finds muscle 
activation solutions that match ID joint moments almost 
perfectly at each time frame, although occasionally a 
small amount of reserve actuator torque is needed due 
to model inadequacies. Consequently, static optimization 
does not possess the joint moment matching errors 
needed to calibrate muscle–tendon model parameter 
values.

Incorporation of the SynX process into an EMG-
driven modeling framework had minimal impact on 
some calibrated model parameter values but a larger 
impact on others. Specifically, Hill-type muscle–ten-
don model parameter values, specifically optimal fiber 
length and tendon slack length, predicted by case 
“ SynXUnmeasured + Params ” closely approximated the 
“gold standard” values obtained from full EMG-driven 
model calibration case “ Params ”, as depicted in Fig.  8. 
This finding can be explained by the fact that Hill-type 
muscle–tendon model parameter values directly affect 
calculated net joint moments, which are the primary 
error terms used for EMG-driven model calibration. In 
contrast, activation dynamics model parameter values, 
including electromechanical delay, activation time con-
stant, EMG scale factor, and activation nonlinear con-
stant, predicted by case “ SynXUnmeasured + Params ” 
showed only reasonable similarity to “gold standard” 
values for the measured muscles. This finding is under-
standable since conversion of muscle activations back 
to muscle excitations does not affect the joint moment 

matching errors that drive the SynX calibration process, 
and no data are available to the calibration process that 
make the conversion process unique.

Several methodological choices needed to be made to 
perform SynX, as indicated in Table 2, and these choices 
could potentially impact SynX performance. A series 
of previously published studies from the authors have 
extensively investigated various methodological choices, 
with the goal of identifying an optimal combination that 
could yield the most reliable and accurate estimation of 
unmeasured muscle activations [32–34]. Initially, princi-
pal component analysis (PCA) provided more accurate, 
reliable, and efficient estimates of unmeasured muscle 
excitations compared to non-negative matrix factoriza-
tion (NMF). The non-negativity constraints for NMF 
and extra design variables for PCA both result in a more 
restricted feasible search space for NMF in compari-
son to PCA [33, 34]. Additionally, PCA was particularly 
beneficial in this computational framework since it per-
mitted residual excitations to be both positive and nega-
tive, which could be beneficial for achieving lower joint 
moment errors. Second, by comparing the results of five 
different EMG normalization methods that were per-
formed either within individual trials or across all trials, 
we observed that EMG normalization does not have a 
significant influence on the SynX performance [33]. As 
a result, measured muscle excitations were normalized 
to their maximum values across all trials before MSA 
to facilitate easy implementation. Furthermore, as the 
number of synergies increased, the performance of SynX 
exhibited non-monotonic behavior, with five or six syn-
ergies generally providing the best SynX performance 
and outcomes for EMG-driven model calibration [34]. 
Hence, when the present study treated a large number 
of muscles as “unmeasured,” five synergies were selected 
for generating the results. Last, based on assumptions 
about how synergy vectors vary across walking cycles, 
we categorized synergy vectors associated with unmeas-
ured and residual muscle excitations as trial-specific, 
speed-specific, or subject-specific, respectively, while dif-
ferent concatenation strategies were used to extract cor-
responding synergy excitations. We found that for equal 
numbers of synergies, trial-specific unmeasured synergy 
vector weights and speed-specific residual synergy vector 
weights produced the best SynX performance [34]. This 
observation informed the way synergy vector weights 
were allowed to vary across walking cycles analyzed in 
the present study.

A reasonable choice of a neural control strategy 
is essential for producing physiologically realistic 
predictive simulations of walking [63].  Presently, there 
is a perspective suggesting that human locomotion 
control could potentially be perceived as a hierarchical 
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structure with two layers. The lower layer is believed 
to create fundamental motor patterns, while the upper 
layer is thought to convey commands to the lower layer 
to adjust these patterns[64]. Specifically, the lower layer 
is proposed to involve two control mechanisms: reflexes 
and central pattern generators (CPGs), which may 
represent feedback and feedforward control, respectively 
[65]. In the context of typical voluntary movements 
like walking, it is hypothesized that the central nervous 
system’s involvement in the upper layer may primarily 
pertain to task initiation. Following initiation, a cluster of 
motoneurons in the spinal cord is theorized to maintain 
continuity by generating predetermined activation 
patterns.[66].  Muscle synergies, where a single pathway 
simultaneously activates  multiple muscles, have also 
been proposed as a lower layer control mechanism that 
reduces the degrees of freedom for complex control 
tasks [65]. This underscores the potential advantages 
of modeling muscle activations using the synergy 
concept over SO-based approach, aligning with the 
true motor control scheme for walking. However, 
given  the consensus that humans use minimum 
effort to conduct well-practiced motor tasks, such as 
walking, SO hypothesis remains the primary and easily 
implemented neural control principle when performing 
optimal control analysis, with the standard practice of 
minimizing the sum of squares of muscle activations [20, 
63, 67]. The comparison of estimated muscle activations 
and forces from both SynX and SO reported in this study 
raise a pivotal question: If the prevalent neural control 
strategy of minimizing the sum of squares of muscle 
activations fails to estimate muscle activations reliably 
when joint kinematics and moments are known a priori 
from experimental walking data, how can it provide 
reliable estimates in predictive simulations of walking 
when joint kinematics and moments are unknown a 
priori? Our findings also suggest the potential benefits 
of using muscle synergies for predicting walking motion 
with musculoskeletal models. While the reliability of 
a synergy-based neural control strategy for generating 
predictive simulations of walking has been verified for 
only one experimental scenario thus far [68], the results 
of the present study support further exploration of a 
synergy-based neural control strategy for generating 
predictive simulations of walking.

This study exhibited several limitations which may 
provide insights for future research endeavors. First, 
this study validated the effectiveness of our EMG-driven 
modeling framework incorporating SynX by analyzing 
gait datasets from only two subjects post-stroke. These 
experimental datasets were chosen since they provided 
EMG signals for every major muscle in our musculo-
skeletal model, enabling the evaluation of estimation 

accuracy. Further investigation is necessary to investigate 
diverse subject populations with larger sample sizes. Sec-
ond, we evaluated SynX using only walking data and only 
two representative speeds. It would be valuable to evalu-
ate SynX further using a broader set of dynamic move-
ment conditions and experimental scenarios, including 
stair climbing, running, and upper extremity tasks [35]. 
Third, SynX has been evaluated thus far using only Hill-
type muscle–tendon models with a rigid tendon. This 
choice was made to enhance computational efficiency 
and since rigid and compliant tendon models produce 
almost identical muscle force estimates for slow move-
ments like walking at a healthy speed, but different mus-
cle force estimates for faster movements such as running 
[69, 70]. As both of our subjects walked at slow speeds, 
use of a rigid tendon model was likely appropriate. How-
ever, it would be worthwhile to expand our approach to 
include compliant tendon models in our Hill-type mus-
cle–tendon models, enabling applications involving fast 
movements. Fourth, it is unknown how well SynX would 
work when used to calibrate only a single-joint model. It 
would be interesting to perform SynX-based estimates 
of muscle activations and forces for single-joint model 
calibration using all eight EMG electrodes dedicated 
to muscles spanning the joint of interest (e.g., the knee) 
and then compare the results with those obtained from 
multi-joint model calibration employing all eight EMG 
electrodes placed across all joints in each leg, as pro-
posed in this study. In the case of the knee, the accuracy 
of the two approaches could be evaluated objectively 
using in vivo measurements of knee contact forces avail-
able from the “Knee Grand Challenge” datasets [71]. This 
evaluation could offer valuable insights for researchers 
focusing on applications for a single joint. Last, we ana-
lyzed the impact of personalizing only activation dynam-
ics and muscle–tendon model parameter values on SynX 
performance. However, personalization of other model 
aspects, including skeletal geometries (as recently inves-
tigated by the authors [72]), muscle kinematics, and other 
physiological properties that contribute to muscle force 
generation, may also impact muscle force estimates. 
Future work should investigate whether SynX perfor-
mance is sensitive to these additional aspects of model 
personalization.

Conclusions
In conclusion, this study demonstrated a significant 
advancement over previous research by highlighting 
the capability of SynX to reproduce a large number 
of muscle activations associated with unmeasured 
muscle excitations while simultaneously calibrating 
EMG-driven model parameter values. Notably, the 
estimation accuracy of muscle activations and forces 
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in terms of shape and amplitude for the unmeasured 
muscles was significantly higher than that of the 
standard SO approach. The incorporation of SynX 
into an EMG-driven model calibration process had 
minimal impact on the calibrated Hill-type muscle–
tendon model parameter values for all muscles and 
activation dynamics model parameter values for 
measured muscles. Additionally, when integrated 
with well-calibrated musculoskeletal models, both 
SynX and SO produced substantially more accurate 
estimates of unmeasured muscle activations and forces, 
with SynX demonstrating superior performance over 
SO. The findings suggest that SynX could effectively 
address the practical challenge of collecting a full set 
of EMG signals for EMG-driven modeling calibration 
in the lower extremity during walking, with significant 
implications for personalized treatments for movement 
impairments in  situations where difficulties arise in 
collecting EMG signals from all important contributing 
muscles.
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