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Abstract 

Background  Gesture recognition using surface electromyography (sEMG) has garnered significant attention due 
to its potential for intuitive and natural control in wearable human–machine interfaces. However, ensuring robustness 
remains essential and is currently the primary challenge for practical applications.

Methods  This study investigates the impact of limb conditions and analyzes the influence of electrode place-
ment. Both static and dynamic limb conditions were examined using electrodes positioned on the wrist, elbow, 
and the midpoint between them. Initially, we compared classification performance across various training condi-
tions at these three electrode locations. Subsequently, a feature space analysis was conducted to quantify the effects 
of limb conditions. Finally, strategies for group training and feature selection were explored to mitigate these effects.

Results  The results indicate that with the state-of-the-art method, classification performance at the wrist was com-
parable to that at the middle position, both of which outperformed the elbow, consistent with the findings 
from the feature space analysis. In inter-condition classification, training under dynamic limb conditions yielded better 
results than training under static conditions, especially at the positions covered by dynamic training. Additionally, 
fast and slow movement speeds produced similar performance outcomes. To mitigate the effects of limb conditions, 
adding more training conditions reduced classification errors; however, this reduction plateaued after four conditions, 
resulting in classification errors of 22.72%, 22.65%, and 26.58% for the wrist, middle, and elbow, respectively. Feature 
selection further improved classification performance, reducing errors to 19.98%, 19.75%, and 27.14% at the respec-
tive electrode locations, using three optimal features derived from single-condition training.

Conclusions  The study demonstrated that the impact of limb conditions was mitigated when electrodes were 
placed near the wrist. Dynamic limb condition training, combined with feature optimization, proved to be an effec-
tive strategy for reducing this effect. This work contributes to enhancing the robustness of myoelectric-controlled 
interfaces, thereby advancing the development of wearable intelligent devices.
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Background
Myoelectric control is widely utilized in prosthetic 
limb control, rehabilitation, robotics, and virtual real-
ity due to its natural and intuitive control capabilities. A 
critical challenge in this field is achieving a robust and 
high-accuracy muscular human–machine interface [1]. 
Despite decades of advancements in myoelectric con-
trol, the primary goal remains to develop a dependable 
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interface for everyday use [2]. Initially, myoelectric con-
trol was employed to control the opening and closing 
of prosthetic hands. In 1948, Reiter et  al. [3] pioneered 
the world’s first prosthetic system controlled by sEMG 
(surface electromyography) recognition technology. 
However, the sEMG recognition technology of that era 
was quite rudimentary, offering only a limited number 
of control options. The ongoing development of sEMG 
intention-sensing technology promises to significantly 
enhance the performance of sEMG-controlled prosthetic 
hands, which will, in turn, greatly improve the quality of 
life for amputees [4]. With advancements in pattern rec-
ognition, scientists have developed systems for control-
ling multiple gestures and decoding continuous finger 
flexion angles. However, ensuring robustness remains 
essential and is currently the primary challenge for prac-
tical applications.

To improve the robustness of sEMG pattern recogni-
tion systems, researchers are exploring new methods 
to address challenges related to limb conditions and 
electrode placements. In particular, sEMG pattern rec-
ognition is significantly affected by variations in limb 
conditions and the positioning of sEMG electrodes. For 
limb conditions, Fougner et al. [5] explored gesture rec-
ognition ability under different limb conditions using 
five static limb positions and provided two solutions to 
improve robustness. Geng et  al. [6] extended this work 
by extending the experiment in trans-radial amputees, 
where five static arm conditions were considered. For 
exploring the dynamic limb conditions’ influence on ges-
ture recognition, Liu et  al. [7] adopted three metrics to 
quantify the changes of sEMG pattern characteristics 
change caused by the variation of limb conditions. For 
sEMG acquisition location, it influences the concrete 
information of sEMG. Thus, the comparison of different 
recognition performance in different locations’ sEMG 
is very fundamental for the improvement of robustness. 
He et al. [8] use 8 equidistant electrodes on the forearm 
and 6 equidistant electrodes on the wrist to prove that 
wrist sEMG is better than forearm sEMG in gesture rec-
ognition. Botros et  al. [9] use four electrodes in wrist 
and four in forearm level to compare their recognition 
ability. In the end, he proved that wrist sEMG has bet-
ter effect on recognizing fine finger movements. Islam 
et  al. [10] conducted a comprehensive study, finding 
that signals from the middle of the extensor digitorum 
communis and extensor digiti minimi muscles provide 
better signal quality and improved finger movement 
recognition. Other researchers have addressed similar 
challenges using multi-information fusion and machine 
learning models. For example, Pan et  al. [11] combined 
eight-channel sEMG with inertial measurement units to 
achieve higher accuracy. Juan et al. [12] enhanced gesture 

classification robustness by employing reinforcement 
learning. Yamanoi et  al. [13] developed a convolutional 
neural network (CNN) to improve classification robust-
ness and reduce the impact of electrode position changes. 
Geng et  al. [6] compared three strategies for enhancing 
system robustness and found that a cascade classifier, 
which first detects limb positions using accelerometers 
(ACC), was the most effective. In addition, research-
ers have explored various artificial intelligence models 
to enhance pattern recognition robustness. A selective 
classification approach, integrating different machine 
learning techniques under clinical conditions, has been 
proposed to improve gesture recognition robustness [14]. 
Traditional machine learning methods, including multi-
ple regression [15], Gaussian process regression [16], and 
neural networks [17], are frequently used for continuous 
angle decoding. Ensemble learning pipelines have also 
been introduced to further boost performance [18]. For 
deep learning, several models have been applied to ges-
ture recognition tasks. These include Convolutional Neu-
ral Networks (CNNs) [19], Recurrent Neural Networks 
(RNNs), autoencoders (AE), Deep Forest models [20], 
and deep transfer learning [21]. Bao et al. [22] combined 
CNNs with Long Short-Term Memory (LSTM) networks 
to create a comprehensive model for decoding continu-
ous motion intentions from sEMG. Mansooreh et al. [23] 
proposed a compact transformer-based hand gesture 
classification system to extract motor unit spike trains 
from high-density sEMG, enhancing classification accu-
racy. Additionally, a bio-inspired neural network (BNN) 
was developed to model the information propagation 
from sEMG to extremity movements, improving recogni-
tion accuracy for six wrist movements [24].

This study focused on the impact of electrode locations 
on limb condition effect and the strategies of mitigating 
the effect. Myoelectric signals from different locations 
were collected under both static and dynamic limb con-
ditions. The contribution of this study included: (1) the 
variation of limb condition effect with the electrode loca-
tions from elbow to wrist was explored and the optimal 
location was selected; (2) multiple-condition training and 
feature selection strategies were employed and their per-
formance on mitigating limb condition effect was evalu-
ated with different electrode locations. The results of 
this study would provide valuable insights for the devel-
opment of wearable human–machine interfaces and the 
design of more robust and accurate gesture recognition 
systems.

Methods
Participants
Fourteen healthy, able-bodied subjects are recruited 
in this study. The details of every subject are shown 
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in Table  1. All subjects signed the informed consent 
before the experiment. The experiment procedures were 
in accordance with the Declaration of Helsinki, and 
approved by the Research Ethics Committee of West 
China Hospital (2022-505).

Experimental protocol
Before data collection, the subjects’ forearms were 
cleansed with alcohol to ensure optimal skin condi-
tion and reduce signal noise. To investigate the effect 
of electrode placement in the radial direction, sEMG 
signals were recorded at three locations: the wrist, the 
middle of the forearm, and the elbow. At each location, 
four sEMG sensors (Noraxon Ultium EMG, USA) were 
positioned equidistantly around the surface of the fore-
arm, as illustrated in Fig. 1. The sampling frequency was 
set to 2000 Hz. Signals were band-pass filtered between 
20 and 500 Hz using a 4th-order Butterworth filter, and a 
45–55 Hz band-stop filter was applied to remove power 
line interference.

To investigate the effect of limb condition on gesture 
recognition from myoelectric signals, the following ten 
limb conditions were considered:

S/AD: the arm was naturally extended toward to 
ground at the side by facing palm inward (static condi-
tion 1).

S/FU: the elbow was flexed to 135◦ in the sagittal 
plane (static condition 2).

S/AU: the upper arm was raised forward on the hori-
zontal plane (static condition 3).

S/AA: the upper arm was abducted on the horizontal 
plane (static condition 4).

D/FUDS: the forearm was swung around the elbow 
joint between S/AD and S/FU slow (1 cycle forth and 
back in 6 s, dynamic condition 1).

D/FUDF: the forearm was swung around the elbow 
joint between S/AD and S/FU fast (1 cycle forth and 
back in 2 s, dynamic condition 2).

D/AUDS: the upper arm was swung around the 
shoulder joint between S/AD and S/AU slow (1 cycle 
forth and back in 6 s, dynamic condition 3).

D/AUDF: the upper arm was swung around the 
shoulder joint between S/AD and S/AU fast (1 cycle 
forth and back in 2 s, dynamic condition 4).

D/AAAS: the upper arm was swung around the 
shoulder joint between S/AD and S/AA slow (1 cycle 
forth and back in 6 s, dynamic condition 5).

D/AAAF: the upper arm was swung around the 
shoulder joint between S/AD and S/AA fast (1 cycle 
forth and back in 2 s, dynamic condition 6). These limb 
motion conditions are showed in Fig.  2. In each limb 
condition, the subject performed the 7 types of ges-
tures: hand close (HC), hand open (HO), wrist flexion 
(WF), wrist extension (WE), hand pinch (HP), hand 
lateral grasp (LG) and rest (RE), as Fig.  3 shows, trial 
by trial in 10 limb conditions; 5 trials EMG data were 
collected in each limb condition. Therefore, each sub-
ject performed 50 trials in total. Subjects were given 
two minutes to rest between every two trials to avoid 
fatigue.

Table 1  summary of the details of the subjects

Sub ID Gender Age Dominant hand Health condition

S1 Male 34 Right Healthy

S2 Male 27 Right Healthy

S3 Female 25 Right Healthy

S4 Male 19 Right Healthy

S5 Male 29 Right Healthy

S6 Male 28 Right Healthy

S7 Male 18 Right Healthy

S8 Male 19 Right Healthy

S9 Male 27 Right Healthy

S10 Male 27 Right Healthy

S11 Male 25 Right Healthy

S12 Male 23 Right Healthy

S13 Male 26 Right Healthy

S14 Male 25 Right Healthy

Fig. 1  Placement of the electrodes from the wrist to the elbow photographed from a posterior, b anterior. Every four electrodes were equidistantly 
placed around circumference of wrist, mid and elbow in direction parallel to muscle fiber
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Feature extraction
To eliminate the transient states of the gesture EMG, only 
the central 2 s of data from each movement were used for 
analysis. The data were segmented into 200 ms windows 
with a 75% overlap, and sEMG features were extracted 

from each window. The traditional sEMG feature set, 
TDAR, was employed in this study, comprising Hudgins 
time-domain features [25] and six autoregressive coeffi-
cients. Linear Discriminant Analysis (LDA) was selected 
as the classifier due to its extensive use in sEMG-based 

Fig. 2  Limb conditions for EMG acquisition. a S/AD: static, arm down (); b S/FU: static, forearm up; c S/AU: static, arm up; d S/AA: static, arm 
abduction; e D/FUDS: dynamic, forearm up and down, slow; f D/FUDF: dynamic, forearm up and down, fast; g D/AUDS: dynamic, arm up and down, 
slow; h D/AUDF: dynamic, arm up and down, fast; i D/AAAS: dynamic, arm abduction and adduction, slow; j D/AAAF: dynamic, arm abduction 
and adduction, fast

Fig. 3  Gesture classes needed to be classified. a Hand close. b Hand open. c Wrist flexion. d Wrist extension. e Hand pinch. f Lateral grasp. g Rest
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gesture recognition studies. Previous research has shown 
that LDA provides performance comparable to more 
complex classifiers, while requiring significantly less 
computational time [26]. Consequently, we initially con-
structed a classifier using LDA to examine the impact of 
different arm movements on sEMG pattern recognition.

Effect of sEMG acquisition location on sEMG pattern 
recognition
Given the different sEMG acquisition placements 
described earlier, we compared the performance of 
each location on pattern recognition using the separa-
tion index (SI). In the pursuit of classification, we assign 
a class label to an input feature vector derived from the 
sEMG signal pattern. To achieve this, we construct a 
hyper-ellipsoid for each class using the centroid (μ) and 
covariance (S) of the feature vectors. This hyper-ellipsoid 
is aligned with the principal components of the data, 
with its semi-principal axes corresponding to the stand-
ard deviations of these components, as illustrated in 
Fig.  4. Our focus is on analyzing variations in the rela-
tionships among hyper-ellipsoids under different limb 
conditions. Specifically, we examine the maximum SI 
within a single class across 10 different limb conditions 
and the SI between different classes across the same 10 
limb conditions.

SI is formulated to measure interclass distances. We 
define SI as one-half the Mahalanobis distance from the 

centroid of the hyper ellipsoid of one group to the cen-
troid of the ellipsoid of the nearest group and average this 
value across the six active classes (excluding rest).

where 10 is the number of limb conditions, 6 is the num-
ber of gestures without rest condition, Sij is the covari-
ance of limb condition j of class i, μ is respectively the 
centroid of the one group with the same kind of annota-
tion with Sij.

Solving effect of arm movements
To address this issue, we proposed a multi-condition clas-
sifier using LDA. Arm movements significantly impact 
motion decoding from sEMG signals, so by training the 
model with multi-condition data, we aim to develop a 
more robust model that achieves higher accuracy. Addi-
tionally, we employed the sequential forward feature 
selection (SFFS) algorithm to identify the optimal feature 
set, further enhancing the accuracy and robustness of the 
LDA model. Through this approach, we seek to discover 
a reliable and precise feature set for an effective gesture 
recognition system. The specific features selected are 
listed in Table 2.

Statistical analysis
A one-way analysis of variance (ANOVA) was used to 
assess the statistical significance of variations among the 
compared instances, which in this study refer to differ-
ent LDA models, particularly in the evaluation of classi-
fication errors. The factors under consideration included 
both the subject and the case, treated as fixed factors. A 
significance level of 0.05 was set to determine if signifi-
cant differences were present.
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Fig. 4  Illustration of constructing hyper ellipsoids for simulating 
the feature movement from the change of limb conditions. This 
figure is just showing bidimensional structure of hyper ellipsoids. 
And hyper ellipsoids are constructed by centroid ( µ ) and covariance 
matrix (S) of feature vectors
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Results
A. Limb condition effect analysis
(1) Performance comparison among different electrode 
locations

The average inter-condition and intra-condition classifi-
cation errors for the three electrode locations were calcu-
lated across all subjects and gestures, as shown in Fig. 5. 
Ten distinct condition-specific classifiers were trained, 

Table 2  The features to be selected

Type Order Feature name Abbreviation

Time domain feature 0 Mean absolute value MAV

1 Variance of EMG VAR

2 Root mean square RMS

3 Waveform length WL

4 Difference absolute standard deviation value DASDV

5 Zero crossing ZC

6 Myopulse percentage rate MPR

7 Willison amplitude WAMP

8 Slope sign change SSC

Frequency domain feature 9 Mean frequency MNF

10 Median frequency MDF

11 Peak frequency PKF

12 Total power TTP

13 First spectral moment SM1

14 Second spectral moment SM2

15 Third spectral moment SM3

16 Power spectrum ratio PSR

17 Variance of central frequency VCF

Auto-regressive coefficient 18 1st AR AR1

19 2nd AR AR2

20 3rd AR AR3

21 4th AR AR4

22 5th AR AR5

23 6th AR AR6

Fig. 5  Confusion matrix of classification errors (in %) averaged across all subjects and all classes when single-condition classifiers (LDA) are used. 
Darker blue boxes imply greater errors. a Wrist sEMG has the best dynamic recognition ability when training in dynamic conditions. b Mid sEMG 
has the best performance of inter-condition. c Elbow sEMG is the worst in all four training and testing conditions
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each using data exclusively from one specific limb con-
dition and then tested on data from all limb conditions. 
The matrix cells represent the average error for all ges-
tures across subjects, with the vertical and horizon-
tal axes indicating the training and testing conditions, 
respectively. Intra-condition classification errors, shown 
on the main diagonal, represent errors within the same 
limb condition, while off-diagonal elements represent 
inter-condition errors. The mean intra-condition classifi-
cation errors along the diagonal for three electrode loca-
tions were 9.77%, 10.31%, and 12.26%, respectively. The 
mean inter-condition errors were 25.42%, 24.51%, and 
32.14%, respectively. The performance of wrist sEMG 
and mid sEMG was similar, and they were both better 
than elbow sEMG.

Figure  6 shows the impact of electrode locations on 
class-specific outcome. This illustration mirrors the 
results in Fig. 5, but averages them across limb conditions 
rather than gestures. Figure  6 shows HO, HP, LG have 
the lowest accuracy in elbow sEMG while wrist sEMG 
has the much higher accuracy of HO, HP and LG than 
the mid of forearm and elbow location. This phenom-
enon implies that the sEMG signals from wrist location 
has the best performance of decoding fine movements 
of fingers. And for mid sEMG, HC, WF and RE have the 
best performance among the three kinds of sEMG. And 
it is noteworthy that WE’s error rate is much lower than 
wrist sEMG and almost the same as the best one-elbow 
sEMG. This phenomenon tells us that the movement of 
the wrist will influence the sEMG of the wrist and within 
a certain range, the farther away from the wrist, the bet-
ter the signal quality, of which the elbow signal quality is 
the highest. For reliable sEMG-based equipment design, 
we can select the gestures suitable for different locations 
of sEMG signals to do the corresponding decoding work. 

For example, the wrist sEMG is suitable for fine finger 
movements, the mid and elbow sEMG is better for wrist 
movements.

To delve deeper into the impact of limb conditions 
on the discrimination of individual classes, the inter-
condition classification matrix presented in Fig.  5, the 
results have been dissected into class-specific matrices, 
as depicted in Fig.  7. The gestures that are particularly 
influenced by limb conditions are evident through darker 
red-colored elements situated away from the main diag-
onal. It is displayed that certain conditions worsen the 
discrimination challenges for these specific classes more 
than others.

For hand closure (HC), the LDA classifiers trained 
on static limb conditions performed the worst on all 
dynamic limb conditions, particularly at the wrist. This 
indicates that for the hand closure action, sEMG signals 
at the wrist are significantly affected by dynamic limb 
conditions, whereas the impact on sEMG signals at the 
mid forearm and elbow is much smaller. The average 
recognition error rates for the three areas are 28.38%, 
22.36%, and 29.34%, respectively. Additionally, by sum-
ming the errors across all testing conditions for each 
training condition, the best training conditions for the 
three electrode locations were identified as D/AUDS, D/
AAAS, and D/AUDF.

For HO, the wrist sEMG has the best performance 
with error of 18.89%, while mid sEMG is 24.17%, elbow 
sEMG is 31.66%. The same as HC, the best training con-
ditions for three electrode locations are S/FU, D/FUDS, 
D/FUDS.

For WF, the mid sEMG has the best performance with 
error of 23.69% among these three sEMG electrode loca-
tions, while wrist sEMG is 32.35% and elbow sEMG is 

Fig. 6  Confusion matrix of classification error (in %) of gestures averaged across all subjects and all limb conditions. Darker blue boxes imply greater 
errors. a Wrist. b Mid. c Elbow
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30.09%. The best training conditions for three electrode 
locations are D/AUDS, D/AUDS, D/AUDS.

For WE, the elbow sEMG has the lowest error of 
15.15%, the mid sEMG has the error of 16.82% and the 
wrist sEMG has the highest error of 21.30%. The best 
training conditions for three electrode locations are D/
FUDF, D/FUDF, S/AA.

For HP and LG, the wrist sEMG has the best perfor-
mance, which indicates that wrist sEMG has the best 
ability of recognizing the fine hand movements among 
these three kinds of EMG. The best training condi-
tions for HP in three electrode locations are D/FUDF, 

D/FUDS, D/FUDF. And the best training conditions 
for LG in three electrode locations are D/FUDF, D/
AAAF, D/AUDS.

For RE, the wrist sEMG has the similar good per-
formance as the mid sEMG, and are much better than 
elbow EMG. The best training conditions for three 
electrode locations are D/AAAF, D/AAAS, D/FUDS.

(2) Comparison between dynamic and static limb conditions
Further, the matrix in Fig. 5 was divided in four blocks, 
which included different training and testing combi-
nations. Among them, black parts mean training in 

(a) (b)

(c)    (d)

(e)    (f)

(g)
Fig. 7  Confusion matrix of classification errors (in %) averaged across all subjects for each class in three electrode locations: wrist, mid and elbow. 
Darker red means greater values. a HC. b HO. c WF. d WE. e HP. f LG. g RE
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static limb conditions and testing in static limb condi-
tions, red parts mean training in static limb conditions 
and testing in dynamic limb conditions, green parts 
mean training in dynamic limb conditions and testing 
in static limb conditions, and purple parts mean train-
ing in dynamic limb conditions and testing in dynamic 
limb conditions. The averages of these four blocks in 
three electrode locations were 19.09%, 33.12%, 25.76%, 
18.52% vs 17.48%, 30.39%, 23.02%, 20.77% vs 23.28%, 
38.74%, 29.52%, 27.90%.

By observing the limb conditions carefully, some 
similarity between different conditions can be found. 
The dynamic conditions can be seen as some com-
binations of different static conditions. For example, 
dynamic condition D/FUD can be seen as the combi-
nation of static conditions S/AD and S/FU. D/AUD can 
be seen as the combination of S/AD and S/AU. D/AAA 
can be seen as the combination of S/AD and S/AA. The 
hypothesis is that the similarity of the condition can 
lead to the similarity of performance. In fact, for wrist 
sEMG, the recognition accuracy of each dynamic con-
dition has the relationship with the related static condi-
tions. The numbers in the small yellow boxes represent 
the classification results of the classifiers trained for the 
limb condition represented by this column. These clas-
sifiers perform best among the static or dynamic clas-
sifiers to which this column belongs when classifying 
the limb conditions represented by this row. This fact 
indicates that limb conditions with certain similarity in 
form play a role in enhancing the robustness of sEMG 
pattern recognition. In other words, sEMG signals cor-
responding to the same gestures of these limb condi-
tions exhibit a higher correlation than signals from 
other limb conditions. It is noteworthy that the classi-
fier trained in the fast limb conditions does not exhibit 
the same distinct advantage over the relative static limb 
conditions as the classifier trained in the slow dynamic 
limb conditions. A similar phenomenon can be 
observed in the middle forearm and the elbow, except 
for one test in the elbow which is not as expected (the 
corresponding area is marked in a small red box in 
Fig.  5), but it is very close to the best. This phenom-
enon indicts that dynamic limb conditions’ sEMG can 
include the information of related static limb condi-
tions’ sEMG. And vice versa, static limb conditions also 
can include the information of the related transient 
conditions of dynamic conditions. This phenomenon 
also inspires us to design some complex dynamic limb 
conditions to cover more usual and normal static limb 
conditions we usually show in daily life to include more 
diverse sEMG information. This operation can improve 
the robustness of recognition models.

From Fig. 8, wrist sEMG has the best performance in 
dynamic training and dynamic testing. This is very suit-
able for the wearable equipment’s design. Because the 
application scenarios of the wearable equipment are 
almost dynamic. This phenomenon demonstrates the 
feasibility of wrist sEMG in complicated real world. And 
by observing the other three groups, the gap between the 
wrist sEMG and mid sEMG is not large while much bet-
ter than elbow sEMG.

(3) Effect of moving speed in dynamic limb conditions
To analyze the influence of different speeds in dynamic 
limb conditions, Fig.  9 presents the recognition error 
rates for various dynamic limb conditions at differ-
ent speeds. Fast and slow conditions of the same type 
are positioned adjacently. For sEMG at all three loca-
tions, ANOVA results indicate no significant difference 
between fast and slow dynamic conditions in terms of 
the robustness of a model trained under these condi-
tions and tested across all limb conditions (including 
static conditions).

In real applications of limb-based sEMG wearables, 
dynamic conditions are usual. By observing the two 
kinds of dynamic testing groups, the phenomenon 
which is that wrist sEMG has the lowest average error 
of six dynamic condition training models illustrates 
that wrist sEMG is very suitable for the real applica-
tions of human–machine interface.

(4) Feature space analysis
As shown in Fig.  10, wrist sEMG demonstrates the 
best separation of seven different gestures across 10 
limb conditions compared to the other two locations. 
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Fig. 8  The error rate of different training and testing conditions,’S’ 
represents static limb conditions, ‘D’ represents dynamic limb 
conditions. The character before dash means training limb condition, 
the character after dash means testing condition
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Figure  11 illustrates the average SI within-class and 
between-class across 14 subjects, indicating that wrist 
sEMG offers the best overall performance in the rec-
ognition task. ANOVA results reveal a significant dif-
ference (p = 0.026) in within-class SI among the wrist, 
mid, and elbow locations, with wrist and mid sEMG 
showing similar values, both lower than the elbow. For 
between-class SI, wrist sEMG has the highest value, 
indicating the best discrimination of different gestures 
at this location.

B. Strategies comparison for mitigating the limb condition 
effect
(1) Multiple‑condition training
The average classification errors of using data from sin-
gle and multiple (2–5) conditions in the training dataset 
and all ten conditions in the test dataset were calculated 
and are presented in Fig.  12. First, we can find that the 

recognition errors decreased with the number of train-
ing conditions increasing. This phenomenon is common 
in three sEMG electrode locations. And the best com-
binations for each group are showed in the table below 
each figure. We can find D/AAAF is the best training 
condition for single-condition training. It implies the fast 
swinging around the shoulder joint between S/AD and S/
AA has the most information diversity than other 9 limb 
conditions. But with the computation continues, the best 
feature sequences for three electrode locations begin 
to be different. By careful observation, the inner law of 
the choice of the added feature is clear. It is that cover 
as more important limb conditions as possible. Through 
ANOVA method, we can find that each group is signifi-
cantly different with adjacent groups of three sEMG elec-
trode locations by the p-values less than 0.05. And we can 
find that each group’s best performance and its combina-
tion in Table 3.
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Fig. 9  The comparison of the influence of different speeds for different dynamic limb conditions on gesture recognition. Every result is achieved 
by one LDA model which is trained in the represented dynamic limb condition and tested in all ten limb conditions. a Wrist. b Mid. c Elbow
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Fig. 10  Visualization of different class of different limb conditions. A very obvious phenomenon can be found in three subfigures which is the wrist 
EMG has the best separability of seven gestures while the elbow EMG is the worst. a Wrist. b Mid. c Elbow
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(2) Feature optimization
To develop a more efficient and convenient method for 
training a robust and accurate pattern recognition sys-
tem, we employed the sequential forward feature selec-
tion (SFFS) method to create a higher-quality feature 
set for gesture recognition. Within the feature space, we 
selected three types of signal features: time domain fea-
tures, frequency domain features, and autoregressive 

coefficients. These features encompass nearly all key ele-
ments used in reliable sEMG-based recognition systems.

For achieving the best feature set for three different 
sEMG electrode locations, we apply SFFS method on 
them. Firstly, we run the codes on wrist sEMG and after 
16 iterations, we get the best feature sequence for wrist 
sEMG. The numerical sequence is [4, 2, 15, 3, 8, 6, 7, 10, 
0, 23, 22, 19, 21, 18, 20, 16], which can be translated to 
[DASDV, RMS, SM3, WL, SSC, MPR, WAMP, MDF, 
MAV, AR6, AR5, AR2, AR4, AR1, AR3, PSR]. Then we 
run the similar codes on middle location and elbow loca-
tion to get their best feature sets. They are [3, 0, 14, 4, 8, 
6, 7, 10, 9, 5, 1, 17, 18, 19, 23, 22, 21] and [3, 0, 14, 6, 4, 8, 
7, 13, 2, 11], respectively after 17 and 10 circles, which 
can be translated to [WL, MAV, SM2, DASDV, SSC, 
MPR, WAMP, MDF, MNF, ZC, VAR, VCF, AR1, AR2, 
AR6, AR5, AR4] and [WL, MAV, SM2, MPR, DASDV, 
SSC, WAMP, SM1, RMS, PKF].And the best accuracy of 
wrist, middle and elbow are 81.02%, 80.35% and 72.86%. 
And every iteration’s accuracy of three sEMG are showed 
in Fig. 13. For more details, we get the related confusion 
matrix of ten different limb conditions of wrist, mid-
dle and elbow, showed in Fig. 14. By checking the three 
matrices, we can find that although SFFS algorithm can 
find a better feature set to improve the accuracy of three 
sEMG locations’ pattern recognition performance, it still 
cannot solve some limb conditions’ low robustness like S/
FU, D/FUDS, D/AUDF.

As the number of features increases, the improvement 
in accuracy becomes progressively smaller. Using the 
t-test, we calculated the significance of accuracy differ-
ences across various feature sets. For wrist sEMG, the 
accuracy in the fifth cycle (78.85%) shows a significant 
improvement over the fourth feature set, with a p-value 
of 0.035. For mid sEMG, the fourth feature set (76.15%) 
significantly improves accuracy compared to the third, 
with a p-value of 0.014. For elbow sEMG, the third fea-
ture set’s accuracy (69.95%) shows a significant improve-
ment over the second, with a p-value of less than 0.001.

Disscussion
The primary aim of this paper is to conduct a compre-
hensive and systematic investigation into the influence 
of limb conditions and sEMG electrode locations on pat-
tern recognition tasks. The results demonstrate that wrist 
sEMG outperforms middle and elbow sEMG in gesture 
recognition across multiple dimensions. Additionally, we 
propose several strategies to enhance the performance 
of inter-condition gesture recognition systems, thereby 
improving the robustness of the classifier.
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Fig. 11  Feature Space Analysis: SI – within class distance for same 
gesture vs. Interclass distance among different gestures. Bars 
represent value calculated by formula (1)-(4), and standard deviation 
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Table 3  The best effect of combination of different training limb conditions

Location Number of training Average error (%) Min error (%) Best combination

Wrist 1 32.23 24.88 D/AAAF

2 26.57 24.52 S/AA, D/FUDF

3 24.10 22.36 S/FU, D/AUDS, D/AAAF

4 22.72 21.40 S/FU, D/FUDF, D/AUDS, D/AAAF

5 21.85 20.72 S/FU, S/AA, D/FUDF, D/AUDS, D/AAAF

Mid 1 31.42 23.21 D/AAAF

2 26.24 24.33 D/FUDS, D/AAAF

3 23.92 22.27 S/AU, D/FUDF, D/AAAF

4 22.65 21.50 S/AU, D/FUDS, D/FUDF, D/AAAF

5 21.85 20.99 S/AU, D/FUDS, D/FUDF, D/AUDS, D/AAAF

Elbow 1 38.24 30.95 D/AAAF

2 31.27 28.82 D/FUDF, D/AAAS

3 28.28 25.88 S/AU, D/FUDF, D/AAAF

4 26.58 25.03 S/AU, D/FUDF, D/AUDS, D/AAAF

5 25.50 24.34 S/FU, S/AA, D/FUDF, D/AUDS, D/AAAF
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Fig. 13  The iteration procedure of classification accuracy in three sEMG electrode locations. Each data point is equivalent to averaging all test 
results from 14 subjects (the model obtained after each person is trained on one limb condition data needs to be averaged across all 10 limb 
conditions, for a total of 100 possible choices). a Wrist. b Mid. c Elbow

Fig. 14  The confusion matrix of classification errors of the best feature set on three sEMG electrode locations. For wrist, it is the result of the 16th 
iteration. For mid, it is the result of the 17th iteration. For elbow, it is the result of 10th iteration. a Wrist. b Mid. c Elbow
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A. Limb condition effect analysis
(1) Performance comparison among different electrode 
locations
In this paper, we use various indexes and methods to 
evaluate the performance of sEMG at different locations. 
The separation index (SI) reveals that wrist sEMG has 
similar within-class separability to mid-forearm sEMG, 
both of which are significantly better than elbow sEMG. 
For between-class separability, wrist sEMG shows the 
highest value among the three locations, indicating supe-
rior discrimination of different gestures numerically. 
Additionally, t-SNE visualizations confirm that wrist 
sEMG provides the best class separability across differ-
ent limb conditions. These two metrics demonstrate that 
wrist sEMG is the most effective choice for gesture rec-
ognition from both numerical and visual perspectives. 
This superiority is further supported by additional test-
ing results, including single-limb condition training, mul-
tiple-limb condition training, and the deployment of the 
SFFS method.

(2) Performance comparison between static and dynamic 
conditions
Firstly, training under different limb conditions reveals 
that some conditions perform better for gesture recogni-
tion tasks, while others are less effective. Analysis of the 
testing results indicates that S/AD is the optimal limb 
condition for both training and testing in intra-condi-
tion scenarios. This suggests that using data from S/AD 
and applying the trained model within the same condi-
tion yields excellent results. Conversely, since prosthetic 
hand users encounter various limb conditions in daily 
life, we calculated the average accuracy of models trained 
under different limb conditions. We found that D/AUDS 
achieved the best average performance across ten limb 
conditions for wrist and mid-forearm sEMG, and sec-
ond-best performance for elbow sEMG, closely matching 
the top result. The average accuracies of D/AUDS at the 
three electrode locations are 19.66%, 20.72%, and 25.95%, 
respectively. These findings indicate that D/AUDS is the 
best choice for single-limb condition training in com-
plex usage scenarios. Additionally, the results demon-
strate that slow dynamic movements are more effective 
than fast dynamic movements for improving model 
robustness.

Upon careful observation, we note that D/FUD com-
bines elements from S/AD and S/FU. It is hypothesized 
that sEMG data from D/FUD may have some correlation 
with both S/AD and S/FU. Similarly, D/AUD combines S/
AD and S/AU, while D/AAA combines S/AD and S/AA. 
Analysis of the matrices for the three EMG acquisition 
configurations reveals that classifiers trained on related 
slow dynamic limb conditions show superior recognition 

accuracy for some static limb conditions. Conversely, 
some dynamic limb conditions exhibit similar trends 
when trained with related static conditions. This suggests 
that incorporating more static limb conditions at slow 
speeds into dynamic training can enhance the robustness 
of the classifier across various limb conditions.

B. Solutions
In this research, we examined the performance of three 
different electrode locations on the forearm for sEMG 
pattern recognition tasks. We employed three distinct 
methods to assess the impact of each electrode location. 
In LDA single-limb condition training, we found that 
wrist sEMG achieves accuracy similar to that of mid-
forearm sEMG. To enhance model accuracy, we utilized 
multiple limb conditions for training, which proved to 
be highly effective in improving model robustness. This 
result is expected and aligns with standard practice. 
However, for practical applications, a convenient and 
simple training protocol is desirable. Therefore, we aimed 
to use as few limb conditions as possible for data acquisi-
tion while still achieving satisfactory performance.

Our analysis reveals that a four-limb-condition train-
ing scheme is optimal for the training dataset. Beyond 
four limb conditions, adding more does not significantly 
improve accuracy. Notably, the three four-limb-condition 
training schemes proposed in this research all include a 
higher proportion of dynamic conditions compared to 
static ones. This suggests that dynamic conditions cap-
ture more movement information in sEMG signals. For 
time-constrained scenarios where recording different 
limb conditions is limited, prioritizing dynamic condi-
tions is advisable. Additionally, if the training process 
is restricted, selecting a few fixed combinations of limb 
conditions can be effective. The table provides concrete 
recommendations for practitioners to develop a more 
robust recognition system based on these findings.

Through multiple limb condition training, we observed 
an improvement in model performance. To further 
enhance the performance of single-limb condition mod-
els, we employed the sequential forward feature selection 
(SFFS) method. This approach significantly improved the 
performance of the single-limb condition models. We 
believe that using the selected feature set in combina-
tion with multiple limb conditions will yield better results 
compared to using only the TDAR feature set.

Analysis of the selected features revealed that the initial 
features are predominantly time-domain features, with 
many autoregressive indexes also included. Since autore-
gressive features are a subset of time-domain features, 
this suggests that time-domain features contribute signif-
icantly to better recognition performance. For practical 
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applications, we recommend using time-domain features 
for gesture recognition.

Using the t-test method, we identified feature sets with 
significant improvements during the selection process: 
[DASDV, RMS, SM3, WL, SSC] for wrist, [WL, MAV, 
SM2, DASDV] for mid-forearm, and [WL, MAV, SM2] 
for elbow. The recognition errors for these feature sets 
are 21.15%, 23.85%, and 30.05%, respectively.

Both methods have their respective advantages and dis-
advantages. Multi-condition training requires data from 
many different limb conditions to train a more robust 
model, which can be time-consuming. On the other 
hand, the sequential forward feature selection (SFFS) 
method needs to be run for each individual to determine 
the optimal feature set, which also requires significant 
computation time. However, advancements in computer 
technology have greatly improved computational speed.

For wrist sEMG, a feature set comprising five fea-
tures can achieve similar performance to that obtained 
with four limb conditions, demonstrating that the fea-
ture selection method can be more efficient in improv-
ing model performance compared to multi-condition 
training.

C. Limitations
This research investigated the limb condition effect on 
different electrode rings from the elbow to the wrist, 
and provided the optimal limb condition combination 
and feature sets for mitigating the effect. However, there 
were several limitations. As the data of each gesture was 
collected under ten limb conditions, only seven gestures 
were involved in this study for reducing the time of data 
acquisition. As the size of the sensor, the setup of four 
electrodes and three rings was adopted for the limited 
space in the forearm. The performance with more ges-
tures and electrodes, such as the high-density grids, 
should be investigated in future. With the advanced pro-
cessing methods and more electrodes, the classification 
accuracy would be increased, but the trend should be the 
same for the methods used in this study was not specifi-
cally designed for any condition. Besides, though group 
training was simple and effective in reducing limb con-
dition effect, its time consuming and the performance 
would be plateaued with the addition of limb conditions 
in training. For improving the robustness further, it was 
suggested that the combination of the feature selection 
and group training, with the employment of deep learn-
ing methods for its generality ability, might be better 
than the employment of the single strategies. Finally, this 
study focused on the steady state part of sEMG signals, 
which was the same as most myoelectric control stud-
ies [27, 28]. For practical applications, transient part was 
avoidable, and would be investigated in future.

Conclusion
In this paper, we investigate the impact of three sEMG 
acquisition locations and ten limb conditions on the 
performance of gesture recognition systems. The results 
demonstrate that wrist EMG excels in recognizing fine 
hand gestures, making it ideal for wearable wrist devices. 
Mid-forearm EMG performs slightly worse than wrist 
EMG, while elbow sEMG shows the least effectiveness 
for this task.

To address the issue of weak robustness, we propose 
two solutions. First, multi-limb condition training signifi-
cantly improves recognition accuracy for wrist sEMG by 
approximately 10 percent. We also introduce a new train-
ing approach that incorporates more static limb condi-
tions to enhance robustness. Additionally, we applied 
the sequential forward feature selection (SFFS) method 
to identify the optimal feature combinations for differ-
ent sEMG acquisition locations. This method notably 
enhances the robustness of single-limb condition training 
models.

This study paves the way for improving the robust-
ness of wrist-based sEMG wearables, offering valuable 
insights for future development.
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