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The inertial‑based gait normalcy index 
of dual task cost during turning quantifies 
gait automaticity improvement in early‑stage 
Parkinson’s rehabilitation
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Abstract 

Background  The loss of gait automaticity is a key cause of motor deficits in Parkinson’s disease (PD) patients, even 
at the early stage of the disease. Action observation training (AOT) shows promise in enhancing gait automaticity. 
However, effective assessment methods are lacking. We aimed to propose a novel gait normalcy index based on dual 
task cost (NIDTC) and evaluate its validity and responsiveness for early-stage PD rehabilitation.

Methods  Thirty early-stage PD patients were recruited and randomly assigned to the AOT or active control (CON) 
group. The proposed NIDTC during straight walking and turning tasks and clinical scale scores were measured 
before and after 12 weeks of rehabilitation. The correlations between the NIDTCs and clinical scores were analyzed 
with Pearson correlation coefficient analysis to evaluate the construct validity. The rehabilitative changes were 
assessed using repeated-measures ANOVA, while the responsiveness of NIDTC was further compared by t tests.

Results  The turning-based NIDTC was significantly correlated with multiple clinical scales. Significant group-time 
interactions were observed for the turning-based NIDTC (F = 4.669, p = 0.042), BBS (F = 6.050, p = 0.022) and PDQ-
39 (F = 7.772, p = 0.011) tests. The turning-based NIDTC reflected different rehabilitation effects between the AOT 
and CON groups, with the largest effect size (p = 0.020, Cohen’s d = 0.933).

Conclusion  The turning-based NIDTC exhibited the highest responsiveness for identifying gait automaticity 
improvement by providing a comprehensive representation of motor ability during dual tasks. It has great potential 
as a valid measure for early-stage PD diagnosis and rehabilitation assessment.
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Background
Motor automaticity refers to the ability to coordinate 
movement with minimal attention-demanding executive 
control resources [1]. It is an important mobility func-
tion in healthy adults. The loss of gait automaticity is a 
key cause of motor deficits in Parkinson’s disease (PD) 
patients due to abnormal basal ganglia circuits. Patients 
with PD shift their locomotor control strategy from 
automatic to attentional executive control, resulting in 
common motor symptoms, such as bradykinesia, pos-
tural instability and gait disorders [2]. Novel rehabilita-
tion approaches (i.e., action observation training (AOT) 
and dual-task training) have been proven to be effective 
at improving gait automaticity and enhancing patients’ 
quality of life [3]. However, an efficient assessment 
approach for these interventions against normal physical 
practice is still lacking.

Clinical scales are commonly used for the evaluation 
of rehabilitation effects [4, 5]. The scale scores are gen-
erated based on the doctor’s subjective observations and 
the patient’s self-reports, which may result in lower sen-
sitivity to subtle changes [6]. Physical measures (i.e., the 
10 m walking test and Time Up and Go Test) have also 
been widely employed in clinical assessments where 
walking speed and stride length are usually evaluated [7]. 
Inertial sensors have great potential for providing reliable 
and quantitative spatiotemporal gait parameters because 
of their unique advantages of good wearability and lack 
of laboratory environment constraints [8, 9]. However, 
due to PD patients would exhibit gait disorders in vari-
ous perspectives, a single parameter may be insufficient 
to reflect gait changes in specific rehabilitation interven-
tion for PD patients. Bezerra et  al. [10] demonstrated 
that the AOT intervention reduced freezing of gait (FoG) 
episodes, but there was no significant difference in walk-
ing speed between the experimental group and controls. 
Similar results were reported by Jaywant et al. [11]. This 
suggests that the absence of a notable effect on walking 
speed does not necessarily render the intervention inef-
fective but may influence aspects such as gait automatic-
ity. The assessment of motor control capability should 
not rely solely on a single gait parameter.

The dual task paradigm is a powerful method for 
evaluating motor automaticity in which a participant 
performs a primary motor task with a secondary cog-
nitive or motor task. The dual task condition yields a 
deterioration in both task performances compared 
to the single-task condition. The performance decre-
ments are interpreted as resulting from a competi-
tion of executive control resources, so-called “dual 
task cost” (DTC) [12, 13]. Although the determinants 
of DTC are multifactorial and complicated in that the 

given instructions, task priorities, and task difficul-
ties are known to impact DTCs [14], complex primary 
motor tasks may guarantee an unavoidable demand 
for attentional executive control resources. The neural 
response underlying gait automaticity was investigated 
in a turning-based dual task test [15, 16]. Koçer et  al. 
reported that PD patients exhibited an increased DTC 
of turning-based dual task duration [13]. The DTCs of 
the turning peak velocity, turning duration, and num-
ber of turning steps were used to identify patients with 
and without FoG [17, 18]. Our previous study devel-
oped an inertial-based quantitative gait assessment 
model that enables the estimation of gait spatiotempo-
ral parameters and joint kinematics in various domains 
[19]. The gait spatiotemporal parameters significantly 
represent postural instability and gait abnormalities in 
early-stage PD. Early-stage PD patients exhibit more 
discriminative gait variables (i.e., stride length and joint 
range of motion) during turning than healthy controls 
[20, 21]. The fusion of gait variables during turning sig-
nificantly improved the classification accuracy of early 
PD patients. Current studies have mostly focused on 
PD classification using machine learning methods [22–
24]. A general comprehensive indicator for evaluat-
ing the effectiveness of rehabilitation interventions for 
early-stage PD is still lacking [25].

This study aimed to propose a novel normalcy index 
based on the DTC (NIDTC) during turning-based dual 
tasks and to evaluate its validity and responsiveness for 
early-stage PD rehabilitation intervention assessment. 
The NIDTC integrates the DTCs of gait spatiotem-
poral parameters derived from a complex motor task 
comprising straight walking and turning with/without 
a secondary serial-3 subtraction task. As the effective-
ness for alleviating FOG by improving the patient’s gait 
automaticity of the AOT approach has been proven 
[26, 27], a 12-week AOT intervention was adminis-
tered to a group of early-stage PD patients. AOT works 
by enhancing motor learning [28, 29] specifically to 
improve gait automaticity by leveraging the Mirror 
Neuron System (MNS) [30] and promoting neuroplas-
tic changes [27]. Meanwhile, an active control group 
engaged in 12-week stretching exercises to counter-
act the rehabilitation effects of physical activity. We 
hypothesized that both interventions could improve the 
severity of motor impairment but that only the AOT 
intervention is effective at improving gait automaticity. 
We assessed the validity of the NIDTC by calculating 
its correlation with clinical scales before the interven-
tion. The responsiveness of the NIDTC was evaluated 
by comparing the rehabilitation changes between the 
two groups. Sensitivity was then assessed by comparing 
the effect sizes.
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Methods
Participants
Thirty-five idiopathic PD outpatients were recruited 
from the Unit of Neurology, Tianjin Medical Univer-
sity General Hospital, Tianjin, China. The inclusion cri-
teria were as follows: (1) Hoehn & Yahr (H &Y) score 
between 0.5 and 2.5; (2) age between 55 and 75 years; 
and (3) stable dopaminergic medication for at least 4 
weeks. Participants were excluded if they had (1) a diag-
nosis of other neurological diseases, (2) severe ortho-
pedic disease that affects gait performance, (3) any 
previous AOT rehabilitation experience, or (4) ongo-
ing participation in other rehabilitation programs. At 
entry, all patients underwent neurological evaluations 
and MRI scans by a neurological specialist to rule out 
other neurological diseases. A total of thirty patients 
were included in this study. The patients were randomly 
divided into an experimental group (AOT) and a con-
trol group (CON) at a 1:1 ratio using the Research Ran-
domizer website (https://www.randomizer.org), and the 
participants were assigned to different groups by an 
independent researcher who was not involved in any 
other aspects of the study.

This study was approved by the Ethics Commit-
tee of Tianjin Medical University General Hospital 
(IRB2022-KY-300) and Tianjin University (TJUE-2023-
003). The clinical rehabilitation part of this study has 
been registered at the Chinese Clinical Trial Registry 
(ChiCTR2300067657). All the patients provided written 
informed consent before participating but were blinded 
to the intervention hypothesis of each group. The clini-
cal rehabilitation in this study was conducted following 
the CONSORT guidelines to standardize the process, as 
shown in Fig. 1.

Rehabilitation interventions
The AOT group underwent an action observation train-
ing program that involved an eight-form routine based 
on 24-form Tai Chi, which gradually increased move-
ment difficulty from simple to complex [31]. Each form 
was split into a 2-min video clip. Patients were instructed 
to observe and imitate the movements in a structured 
format consisting of “2  min of observation—5  min of 
execution”, which was repeated five times followed by 
a 15-min movement practice session. To eliminate the 
impact of physical activity on rehabilitation, patients in 
the control group were instructed to perform 1-h stretch-
ing training twice a week. Both groups underwent a 
12-week intervention at the Intelligent Rehabilitation Lab 
of Tianjin University. All patients who participated in the 
trials were in the “medication-ON” state. More details 
are provided in the supplementary materials.

Clinical assessment
At enrollment, an experienced neurologist performed 
physical examinations and evaluations of the H &Y 
score for all patients in the “medication-OFF” state. 
The Movement Disorders Society Unified Parkinson’s 
Disease Rating Scale part III (MDS-UPDRS-III), Mini-
Mental Status Examination (MMSE), Montreal Cogni-
tive Assessment (MoCA), Berg Balance Scale (BBS), 
Mini-Balance Evaluation System Test (Mini-BESTest), 
and Parkinson’s Disease Questionnaire 39-item version 
(PDQ-39) were evaluated in the “medication-ON” state 
(approximately 2  h after regular dopaminergic medi-
cation) by standardized trained physicians before and 
after 12 weeks of rehabilitation. The physicians were 
blinded to the group allocation.

Dual‑task protocol
The patients performed a single motor task first as a 
baseline, where they were instructed to walk along a 
5-m pathway with two 180° turns at their self-selected 
comfortable walking speed for 5 laps. In the dual task 
paradigm, participants were given a three-digit number 
below 300 and were required to subtract 3 sequentially 
from the given number when performing the “straight 
walking—180° turn” motor task and to speak out the 
calculation results. The serial-3 subtraction task perfor-
mance (calculation number and accuracy) was recorded 
by a blinded assessor. The experiment was conducted in 
a controlled indoor environment. Five inertial sensors 
(myoMOTION, Noraxon, USA) were placed on the pel-
vis, shanks, and feet on both sides of each patient for 
motion data collection. Video of gait performance was 
also recorded for data quality assurance and compli-
ance checking.

DTC calculation
The orientational angles and acceleration data of lower 
limb segments were used to derived gait spatiotem-
poral parameters, namely stride length (STL), stride 
time (SRT), stance phase time (STT), swing phase time 
(SWT), and walking speed (WAS) based on our pro-
posed inertial-based gait spatiotemporal model [21]. 
The data was segmented into straight walking and turn-
ing tasks using the gait task recognition algorithm [32]. 
The STL and WAS were normalized to the individual’s 
height. Each patient completed a total of 11 straight 
walking segments and 10 turning segments. The first 
and last segments of the straight walking and turning 
tasks were excluded because of gait transitions. Eight 
segments of each gait task were selected for further 
data analysis.
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The DTCs of the individual gait parameters were calcu-
lated as follows:

where ParamST represents the gait parameters in a 
single-task condition and ParamDT represents the gait 
parameters derived in the dual-task condition. Two gait 

(1)DTC(%) =
ParamDT − ParamST

ParamST
100%

tasks were considered in our study: straight walking 
(SW) or turning (T).

NIDTC calculation
Figure  2 visualizes the procedures of the gait pro-
tocol and data analysis for the NIDTC calculations. 
The means of DTCs based on gait cycles were calcu-
lated respectively for the left and right sides and then 

Fig. 1  CONSORT flow diagram
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constructed into a 16 × 5 matrix. The covariance matrix 
was first computed to obtain eigenvalue-eigenvector 
pairs [33]. Uncorrelated variables were calculated [34]:

where DTC is the constructed 16× 5 matrix, �i and αi 
are the ith eigenvalue-eigenvector pair, and yi is the ith 
uncorrelated new vector.

The vectors yi with contributions of less than 1% to 
the variance were excluded based on the Variance 
Accounted For (VAF) criterion [35]. The NIDTC was 
calculated as the total Euclidean distance of yi:

(2)yi = DTC·
1

√
�i

· αi

The NIDTC during the overall motor task (NIDTC_MT) 
was calculated with the combination of the 10 DTC 
parameters during straight walking and turning tasks.

Sample size calculation
Based on Sarasso et  al.’s study [36], an effect size d 
of 1.087 was calculated using G*Power 3.1 software 
by comparing significant changes in dual task turn-
ing velocity between the AOT and control groups. 
A sample size of n = 15 per group, including a 10% 

(3)NIDTC =

√

∑

5

i=1
y2i

Fig. 2  Flowchart of the gait experimental protocol and feature calculation. All participants completed the single and dual tasks, and motion 
data were recorded by five inertial sensors placed on the pelvis, shanks, and feet of both legs. The data were segmented into straight walking 
and turning tasks, and gait spatiotemporal parameters were estimated. The dual task cost (DTC) of the five parameters was calculated based 
on those during the single task. The normalcy index based on dual task cost (NIDTC) was obtained via principal component analysis
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dropout rate, was used to detect a significant interac-
tion between time and group, with an α of 0.05 and a 
power of 80%.

Statistical analysis
Independent-sample t tests were conducted to compare 
the demographic differences between the two groups at 
baseline. The normality of the clinical scale, DTC, and 
NIDTC results at both time points was tested using 
the Shapiro–Wilk test, while Levene’s test was used to 
assess the homogeneity of variance. Pearson’s correla-
tion coefficient (PCC) was calculated to assess the cor-
relation between the NIDTC and clinical scale scores 
at baseline, thereby assessing the construct validity. 
The outcomes of the rehabilitation interventions were 
examined using a 2-factor mixed repeated-measures 
ANCOVA (2 groups × 2 time points). Covariates in the 
model included disease duration, age, levodopa equiva-
lent dose  (LEDD), and baseline assessment data. The 
group × time interaction represents the outcome differ-
ence between the interventions over time and therefore 
was considered an indicator of the intervention effect 
difference. We conducted independent samples t tests 
comparing the rehabilitation changes between the two 
groups to evaluated the responsiveness of the NIDTC. 
Cohen’ s d effect size was calculated to evaluate the 
indicator sensitivity in the rehabilitation assessment . 
We also use PCC to investigate the correlation between 
functional improvements and changes in the NIDTC 
induced by the two rehabilitation interventions. The 
strength of the correlation was categorized as poor (r < 
0.30), moderate (0.30 ≤ r < 0.50), good (0.50 ≤ r < 0.70), 
or strong (r ≥ 0.7). Cohen’s d effect size was classified 
as small, medium, or large for values of 0.20, 0.50, and 
0.80, respectively. Statistical significance was set as p < 
0.05. Missing data caused by the dropouts was excluded 
for further analysis. All the statistical analyses were 
performed using SPSS (IBM V.25).

Results
Participants
A total of 35 patients were recruited, 30 of whom met 
the inclusion criteria and were enrolled and randomly 
assigned to the AOT or CON group in our study. As 
shown in Fig.  1, all patients received a baseline assess-
ment and completed a 12-week rehabilitation inter-
vention. One patient in each group dropped out at the 
post-rehabilitation assessment, leaving a total of 28 
patients (14 patients in each group) for data analysis. 
Table 1 shows that the demographic and baseline clinical 
characteristics in the AOT and CON groups were similar.

Correlations between baseline NIDTC and clinical scale 
scores
Figure  3 shows that the NIDTC during turning 
(NIDTC_T) exhibited stronger correlations with clini-
cal scales than did the NIDTC during straight walking 
(NIDTC_SW), NIDTC during the overall motor task 
(NIDTC_MT), and the DTCs of gait spatiotemporal 
parameters. The NIDTC_T demonstrated a strong posi-
tive correlation with the UPDRS-III score (r = 0.787, p 
< 0.001), a good negative correlation with the BBS score 
(r = − 0.649, p < 0.001) and Mini-BESTest score (r = 
− 0.581, p = 0.001), and a moderate negative correlation 
with the MoCA score (r = − 0.443, p = 0.009) and MMSE 
score (r = − 0.432, p = 0.011), indicating a good construct 
validity. On the other hand, the NIDTC_SW exhibited 
only a moderate positive correlation with the UPDRS-III 
score (r = 0.326, p = 0.045). The NIDTC_MT exhibited 
a good positive correlation with the UPDRS-III score (r 
= 0.509, p = 0.003), a moderate negative correlation with 
the BBS score (r = − 0.498, p = 0.004) and Mini-BEST-
est score (r = − 0.369, p = 0.027), however, all of these 
correlations are weaker compared to those observed for 
NIDTC_T.

Rehabilitation outcome differences 
between the interventions
Considering baseline variables as covariates, we observed 
a decrease in NIDTC_T in the AOT group and an 
increase in the CON group, with a significant group × 
time interaction (F = 4.669, p = 0.042, η2 = 0.175). This 
indicates that the NIDTC_T can be used to distinguish 
rehabilitation outcomes effectively between AOTs and 
active control interventions. BBS (F = 6.050, p = 0.022, 
η2 = 0.216) and PDQ-39 (F = 7.772, p = 0.011, η2 = 0.261) 
also exhibited significant group × time interactions. Both 

Table 1  Demographic characteristics of PD patients at baseline

All values are represented as the mean ± standard deviation. ON and OFF 
represent the medication states

Characteristics AOT (n = 14) CON (n = 14) p

Gender (M/F) 6/8 7/7 –

Age (years) 65.29 ± 4.60 63.86 ± 5.91 0.357

Height (m) 1.63 ± 0.09 1.65 ± 0.07 0.489

PD duration (years) 4.07 ± 2.16 2.86 ± 1.51 0.139

H &Y OFF 1.60 ± 0.57 1.50 ± 0.97 0.097

LEDD (mg) 433.81 ± 238.07 368.21 ± 182.81 0.565

UPDRS-III ON 14.29 ± 9.60 16.21 ± 5.89 0.213

BBS ON 48.64 ± 2.53 48.57 ± 2.14 0.907

Mini-BESTest ON 23.07 ± 1.86 23.57 ± 2.41 0.888

PDQ-39 ON 23.00 ± 10.62 23.64 ± 11.14 0.927
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groups had positive trends in changes in BBS and PDQ-
39 scores, while the AOT group demonstrated more sub-
stantial improvements (AOT: BBS, 48.64 ± 2.53 vs 51.14 
± 1.35; PDQ-39, 23.00 ± 10.62 vs 5.64 ± 3.05; CON: BBS, 
48.57 ± 2.14 vs 49.43 ± 2.59; PDQ-39, 23.64 ± 11.14 vs 
15.14 ± 12.42). No significant group × time interactions 
were detected for single gait spatiotemporal parameters, 
single DTCs, cognitive scales or cognitive task perfor-
mance (Table 2).

Figure  4A–F compares the correlation of clinical 
scale scores and NIDTC_T between the AOT and CON 
groups. There was a greater significant positive cor-
relation between the NIDTC_T and UPDRS-III score 
(r = 0.575, p = 0.001) in the AOT group than in the 
CON group (r = 0.433, p = 0.011). A similar trend was 
also observed in the correlation between NIDTC and 
BBS (AOT: r = − 0.624, p < 0.001; CON: r = − 0.480, p 
= 0.005), MMSE (AOT: r = − 0.477, p = 0.005; CON: r 
= − 0.326, p = 0.045), and Mini-BESTest (AOT: r = 
− 0.449, p = 0.008; CON: r = − 0.361, p = 0.030). Moreo-
ver, NIDTC_T showed a moderate positive correlation 

with PDQ-39 in the AOT group (r = 0.332, p = 0.042) 
and MOCA (r = − 0.393, p = 0.019) in the AOT group, 
while no significant correlation was observed in the CON 
group.

NIDTC_T (95% CI − 2.319/− 0.212, p = 0.020), BBS 
(95% CI 0.007/3.278, p = 0.049), and PDQ-39 (95% 
CI − 17.629/− 0.085, p = 0.048) had significant inter-
group differences, as shown in Fig. 4G–J. However, only 
NIDTC_T showed a significant opposite trend of changes 
between the two groups and had the largest effect size 
(Cohen’s d = 0.968).

Discussion
This study presented a novel complex dual-task gait 
indicator for assessing gait automaticity improvement 
in early-stage PD patients. The construct validity and 
responsiveness to rehabilitation interventions were eval-
uated. We found that the turning-based NIDTC demon-
strated good construct validity and effectively revealed 
different rehabilitation effects between the AOT and 
CON groups with a large effect size. This suggests that 

Fig. 3  Correlation analysis of clinical scores and gait indicator values in all patients at baseline. A Heatmap of the Pearson correlation coefficient 
matrix between clinical scores and gait indicators. B–G Scatter plots of the Pearson correlation coefficient between the clinical scores and NIDTC 
during turning. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. DTC1-5 represent the stride length, stride time, stance phase time, swing phase time, 
and walking speed during straight walking, respectively, and DTC6-10 represent the DTCs during turning
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the NIDTC_T provides a comprehensive representation 
of gait automaticity beyond traditional clinical scales for 
early PD.

To the best of the authors’ knowledge, this is the first 
attempt to employ a dual-task gait normalcy index in the 
rehabilitation assessment of early PD patients. Gait nor-
malcy index indicators have been used for the assessment 
of gait abnormalities in patients with cerebral palsy [33], 

Guillain-Barré syndrome [37], lower limb amputees [38], 
and anterior cruciate ligament deficiency combined with 
meniscus injury [39]. Wang et  al. developed an IMU-
based method of gait pattern analysis to classify three 
different neurological diseases (healthy control, periph-
eral neuropathy, poststroke and Parkinson’s disease) [40]. 
They further proposed an inertial-based gait normalcy 
index to evaluate the overall gait performance of patients 

Table 2  Results of the rehabilitation effect assessment using NIDTC and other indicators

All values are represented as the mean ± standard deviation. The * symbol represents a significant group×time interaction (p < 0.05)

Indicators AOT (n = 14) CON (n = 14) Group × Time

Pre Post Pre Post F p η
2

NIDTC

 Straight walking 3.58± 1.30 3.15± 0.92 3.96± 1.94 3.58± 1.17 0.987 0.331 0.043

 Turning 5.97± 1.41 5.15± 0.97 5.37± 1.34 5.81± 1.16 4.669 0.042* 0.175

Clinical scales

 UPDRS-III 14.29± 9.60 11.29± 7.91 16.21± 5.89 16.36± 8.20 2.498 0.128 0.102

 MoCA 24.50± 2.95 25.86± 2.77 25.21± 2.01 25.43± 2.50 1.325 0.262 0.057

 MMSE 27.07± 2.06 28.71± 1.94 28.43± 1.34 28.14± 1.56 1.766 0.198 0.074

 BBS 48.64± 2.53 51.14± 1.35 48.57± 2.14 49.43± 2.59 6.050 0.022* 0.216

 Mini-BESTest 23.07± 1.86 24.57± 2.03 23.57± 2.41 23.79± 2.46 2.541 0.127 0.103

 PDQ-39 23.00± 10.62 5.64± 3.05 23.64± 11.14 15.14± 12.42 7.772 0.011* 0.261

Spatiotemporal parameters (straight walking)

 Stride length 0.64± 0.08 0.65± 0.07 0.65± 0.06 0.66± 0.07 0.012 0.913 0.001

 Stride time (s) 1.13± 0.12 1.10± 0.09 1.10± 0.08 1.08± 0.07 0.808 0.379 0.035

 Stance phase time (s) 0.79± 0.09 0.76± 0.07 0.77± 0.06 0.75± 0.06 0.241 0.629 0.011

 Swing phase time (s) 0.34± 0.03 0.35± 0.02 0.33± 0.02 0.34± 0.02 2.203 0.152 0.091

 Walking speed (/s) 0.57± 0.09 0.59± 0.07 0.59± 0.07 0.61± 0.07 0.342 0.565 0.015

Spatiotemporal parameters (turning)

 Stride length 0.44± 0.06 0.44± 0.05 0.46± 0.05 0.45± 0.06 0.037 0.849 0.002

 Stride time (s) 1.17± 0.13 1.14± 0.11 1.16± 0.10 1.14± 0.09 0.153 0.699 0.007

 Stance phase time (s) 0.83± 0.11 0.80± 0.09 0.82± 0.09 0.80± 0.07 0.001 0.981 < 0.001

 Swing phase time (s) 0.34± 0.03 0.34± 0.03 0.33± 0.02 0.34± 0.03 1.432 0.244 0.061

 Walking speed (/s) 0.38± 0.07 0.39± 0.04 0.40± 0.07 0.40± 0.06 0.006 0.939 < 0.001

DTC (straight walking)

 Stride length (%) −9.69± 11.28 −9.22± 7.20 −7.91± 6.65 −6.91± 5.22 0.015 0.902 0.001

 Stride time (%) 6.55± 8.25 4.64± 3.70 2.79± 4.30 2.12± 3.46 0.549 0.467 0.024

 Stance phase time (%) 8.31± 10.20 5.91± 4.53 3.84± 4.74 2.91± 3.78 0.484 0.494 0.022

 Swing phase time (%) 2.45± 4.96 1.83± 2.77 0.41± 4.30 0.37± 3.11 0.423 0.522 0.019

 Walking speed (%) −14.00± 14.50 −12.43± 8.75 −10.22± 8.90 −8.72± 6.12 0.008 0.928 0.001

DTC (turning)

 Stride length (%) −39.09± 6.50 −35.15± 6.86 −39.26± 4.87 −39.26± 6.30 2.021 0.169 0.084

 Stride time (%) 11.86± 11.09 7.33± 10.98 9.07± 4.82 9.45± 5.14 0.633 0.435 0.028

 Stance phase time (%) 16.42± 12.44 11.20± 14.57 12.76± 5.32 12.64± 5.71 0.255 0.619 0.011

 Swing phase time (%) 1.30± 9.64 0.49± 4.41 0.69± 4.29 2.35± 4.71 2.570 0.123 0.105

 Walking speed (%) −44.50± 6.81 −38.19± 10.17 −43.78± 5.39 −43.96± 6.71 2.340 0.140 0.096

Cognitive task

 Accuracy (%) 94.49± 11.58 96.09± 5.21 92.22± 9.70 96.26± 7.35 0.770 0.390 0.034

 Number 19.29± 7.18 20.36± 4.53 21.50± 7.00 21.64± 6.46 0.146 0.706 0.007
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with n-hexane neuropathy during the rehabilitation pro-
cess at different time points [34]. The selection of gait 
variables varied among these studies, and gait variables 
of healthy controls were usually used as a baseline to esti-
mate gait abnormalities. However, a large sample size of 
healthy controls is needed to obtain a reliable baseline 
[41, 42]. Our study was the attempt to propose the evalu-
ation of dual task gait performance with single-task gait 
performance as baseline. The NIDTC efficiently reflects 
changes of gait performance caused by dual task para-
digm which is potential for gait automaticity assessment 
in early-stage PD.

Motor task complexity improved NIDTC perfor-
mance in assessing motor symptoms in early-stage PD 
patients. As shown in Fig.  3, the NIDTC_T was signifi-
cantly correlated with the UPDRS-III score, BBS score, 
and Mini-BESTest score, while the NIDTC_SW was 
significantly correlated with only the UPDRS-III score. 

The NIDTC_MT incorporates 10 parameters for both 
straight walking and turning, but its correlations with 
clinical scales were worse than those with the NIDTC_T. 
It suggests that the turning task contributes significantly 
to the validity of NIDTC while the inclusion of additional 
parameters may not improve the NIDTC performance. 
The complex motor task increased the continuous 
demand for attentional executive resources. PD patients 
have a significant loss of attention allocation capacity 
due to the decreased connectivity of the dorsal atten-
tion network [43] and experience more gait deficits at 
turns [13, 44]. Therefore, the NIDTC_T could provide a 
more comprehensive representation of the motor abili-
ties of early-stage PD patients. Moreover, the NIDTC_T 
also showed significant correlations with the MOCA 
and MMSE scores. This indicates that the turning-based 
NIDTC reflects gait automaticity, which is related to not 
only motor but also cognitive functions in PD patients.

Fig. 4  Comparison of clinical scale scores and NIDTC_T between the AOT and CON groups. A–F Scatter plots of Pearson correlation coefficients 
between the NIDTC_T and clinical scale scores (UPDRS-III, MOCA, MMSE, BBS, Mini-BESTest, and PDQ-39) in the two groups. G–J Comparison 
of changes in the NIDTC_T and clinical scale scores between the two groups. K Effect sizes of NIDTC_T and clinical scales. * = p < 0.05
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Correlations between NIDTC_T and PDQ-39 were 
higher in the AOT group compared to the CON group. 
As shown in Fig. 4, the NIDTC_T and PDQ-39 exhibited 
a significant positive correlation (r = 0.332, p = 0.042) 
in the AOT group, indicating that changes in NIDTC_T 
reflect not only improvements in gait but also enhance-
ments in overall quality of life. The absence of significant 
correlation in the control group may be attributed to less 
improvement in PDQ-39. It is important to note that the 
PDQ-39 evaluates various dimensions of health-related 
quality of life in Parkinson’s disease patients, extending 
beyond motor abilities [45]. As a subjective measure, 
it can vary depending on the patient’s condition at the 
time, leading to high variability between individuals. This 
might explain the lack of significant correlation between 
NIDTC_T and PDQ-39 before rehabilitation. However, 
as gait automaticity improved, so did patients’ quality 
of life, which likely explains the significant correlation 
observed post-rehabilitation.

The turning-based NIDTC distinguished the different 
rehabilitation effects between the AOT and CON groups. 
Strong clinical evidence has shown that AOT interven-
tion is a reliable and effective rehabilitation approach for 
improving gait automaticity in PD patients by inducing 
reorganization of the cerebello-basal ganglia-thalamo-
cortical network [46–48]. Level 1 evidence supported the 
effects of AOT interventions on improving BBS scores, 
PDQ-39 scores, and UPDRS-III scores [49]. However, 
significant differences between the AOT and active con-
trol groups were not observed when the TUG test was 
used for gait assessment [26, 50]. This may be because the 
TUG test, when performed conventionally, also evalu-
ates turning activity, but this activity is not assessed sepa-
rately. Our results for clinical scales, gait spatiotemporal 
parameters and single DTCs were consistent with those 
of previous studies (Table 2). The AOT and CON groups 
showed opposite changes in the proposed NIDTC_T, as 
shown in Fig. 4D. This suggested that the turning-based 
NIDTC is sensitive to improvements in gait automaticity 
induced by the AOT intervention.

The turning-based NIDTC demonstrated the largest 
effect size in the comparison of intergroup differences. 
Although the BBS and PDQ-39 also had medium to large 
effect sizes, this might be because the AOT intervention 
significantly improved participants’ balance function and 
self-reported quality of life (Fig.  4I and J). In particular, 
the PDQ-39 is a subjective questionnaire for patients. 
Studies have shown that the PDQ-39 may underestimate 
dyskinesia and is not sufficient for patients with milder 
symptoms [51, 52]. These indicators did not detect the 
rehabilitation differences between the AOT and CON 
groups. Figure 4H indicates that the CON group did not 

have an improvement in the UPDRS-III score; however, 
the effect size of the UPDRS-III score was relatively low 
(Cohen’s d = 0.536). Overall, our proposed turning-based 
NIDTC is more effective than clinical scales in evaluating 
gait automaticity in early-stage PD patients.

One limitation of this study is the relatively small 
sample size, which may affect the generalizability of the 
results. A multicenter rehabilitation study will be per-
formed in the future to validate the proposed NIDTC 
in a larger group of early-stage PD patients. The inter-
rater and test-retest reliability were not considered in the 
experiment, since the study’s aim is to propose a novel 
index to evaluate the rehabilitation outcomes for PD 
patients, we will validate the proposed NIDTC in a larger 
study in future. Moreover, gait characteristics, such as 
joint kinematics, gait variability, and stability, can be 
considered in the calculation of the NIDTC, providing a 
more comprehensive evaluation of gait ability.

Conclusions
This study proposed a novel rehabilitation indicator 
method for evaluating gait automaticity in early-stage 
PD patients and evaluated its construct validity and 
responsiveness in a 12-week rehabilitation intervention. 
The results demonstrated that the turning-based NIDTC 
not only had significant correlations with multiple clini-
cal scales but also exhibited greater sensitivity to identify 
gait automaticity improvement in the AOT rehabilitation 
compared to the active control group. This indicator has 
great potential for early-stage PD diagnosis and rehabili-
tation assessment in the clinic.
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