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Abstract
Background  Sensory reafferents are crucial to correct our posture and movements, both reflexively and in a 
cognitively driven manner. They are also integral to developing and maintaining a sense of agency for our actions. 
In cases of compromised reafferents, such as for persons with amputated or congenitally missing limbs, or diseases 
of the peripheral and central nervous systems, augmented sensory feedback therefore has the potential for a strong, 
neurorehabilitative impact. We here developed an untethered vibrotactile garment that provides walking-related 
sensory feedback remapped non-invasively to the wearer’s back. Using the so-called FeetBack system, we investigated 
if healthy individuals perceive synchronous remapped feedback as corresponding to their own movement (motor 
awareness) and how temporal delays in tactile locomotor feedback affect both motor awareness and walking 
characteristics (adaptation).

Methods  We designed the system to remap somatosensory information from the foot-soles of healthy participants 
(N = 29), using vibrotactile apparent movement, to two linear arrays of vibrators mounted ipsilaterally on the back. This 
mimics the translation of the centre-of-mass over each foot during stance-phase. The intervention included trials with 
real-time or delayed feedback, resulting in a total of 120 trials and approximately 750 step-cycles, i.e. 1500 steps, per 
participant. Based on previous work, experimental delays ranged from 0ms to 1500ms to include up to a full step-
cycle (baseline stride-time: µ = 1144 ± 9ms, range 986-1379ms). After each trial participants were asked to report their 
motor awareness.

Results  Participants reported high correspondence between their movement and the remapped feedback for real-
time trials (85 ± 3%, µ ± σ), and lowest correspondence for trials with left-right reversed feedback (22 ± 6% at 600ms 
delay). Participants further reported high correspondence of trials delayed by a full gait-cycle (78 ± 4% at 1200ms 
delay), such that the modulation of motor awareness is best expressed as a sinusoidal relationship reflecting the 
phase-shifts between actual and remapped tactile feedback (cos model: 38% reduction of residual sum of squares 
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Background
In parallel to assistive technology (AT) advancing beyond 
passive, mechanical engineering solutions to technologi-
cal devices with embedded computing capacities and (bi-
directional) neural interfaces [1, 2], so too has there been 
a shift in scientific thinking concerning once exclusively 
biological or psychological concepts of embodiment and 
body representation. Concepts such as ownership, refer-
ring to the sensation that our body belongs to ourself [3], 
and the sense of agency, that is, the feeling of being the 
author of and in control of your actions [4], are becoming 
common parlance within the AT community and used 
as metrics for the evaluation of these devices. Like ear-
lier investigations in the cognitive sciences, these studies 
often rely on brief, easily quantifiable, and goal-directed 
actions, often with mediated outcomes. However, as we 
argue below, key insights may be gained by consider-
ing continuous movements (not just of the upper-limbs) 
and automatic motor compensation (outside of a goal-
directed action). Furthermore, as in the case of patients 
with amputations or sensory neuropathies where natural 
sensory feedback is compromised, understanding how 
feedback may be augmented such that it is automati-
cally integrated into sensorimotor control and how this 
contributes to ownership and agency is an area of both 
conceptual and translational interest [5, 6]. An impor-
tant differentiator for movement perception, is based on 
perceiving and recognising this feedback as originating 
from one’s own as opposed to someone else’s body or a 
stereotyped movement, and this information may poten-
tially feed into motor adaptation [7–9]. Accordingly, 
one motivating factor for this study was to determine to 
what extent sensorimotor feedback is perceived as self-
generated and how this affects motor behaviour (adapta-
tion). Based on our prior work on haptic vests [10, 11], 
we here developed a vibrotactile system to systematically 
evaluate participants’ perception of locomotor-feedback 
in relation to potential adaptation of their gait. To this 
end, the FeetBack system enabled us to non-invasively 

remap step-related feedback from participants’ foot soles 
to their own back during natural over-ground walking. 
The tactile sensation of the stance phase, from heel-
strike to toe-off, is thereby remapped to the participant’s 
back using vibrotactile apparent movement (VAM). By 
modulating the timing-onset of the locomotor feedback 
we could quantify both participants’ awareness of their 
movements as well as the effects of the tactile feedback 
on sensorimotor control and adaptation.

Tactile feedback for locomotion
Wearable biofeedback systems have been used to provide 
artificial tactile feedback in the form of simple vibrations 
during walking. Early studies with such devices have 
demonstrated that rhythmic tactile stimulation during 
locomotion may improve gait characteristics in Parkin-
son’s Disease [12], stroke [13], and hemi- or paraplegic 
patients [14], as well as lower-leg amputees [15]. Such 
approaches are interesting for three main reasons; for one 
they may be more practically integrated without interfer-
ing with auditory or visual function; for another, they can 
be “internally” paced, based on the participants on-going 
movements (as opposed to external rhythmic cueing); 
and finally, tactile stimulation can be used to augment 
somatosensory and proprioceptive feedback that can be 
impaired in patient populations and therefore not cor-
rectly integrated into on-going motor control [16]. As 
discussed in the following paragraphs, previous research 
in cognitive neuroscience has demonstrated how spatial 
and temporal mismatches introduced into the feedback 
not only inform us about patients’ motor awareness [17] 
but also lead to systematic sensorimotor adaptation that 
could potentially be exploited for rehabilitation purposes 
[18].

Motor Awareness and the Sense of Agency.
Although research in human neuroscience has pre-

dominantly focused on strictly pre-defined actions of the 
upper-limbs, most of the movements we perform over 
the course of a day are neither immediately goal-directed 

(RSS) compared to linear fit, p < 0.001). The temporal delay systematically but only moderately modulated participant 
stride-time in a sinusoidal fashion (3% reduction of RSS compared a linear fit, p < 0.01).

Conclusions  We here demonstrate that lateralized, remapped haptic feedback modulates motor awareness in 
a systematic, gait-cycle dependent manner. Based on this approach, the FeetBack system was used to provide 
augmented sensory information pertinent to the user’s on-going movement such that they reported high motor 
awareness for (re)synchronized feedback of their movements. While motor adaptation was limited in the current 
cohort of healthy participants, the next step will be to evaluate if individuals with a compromised peripheral nervous 
system, as well as those with conditions of the central nervous system such as Parkinson’s Disease, may benefit from 
the FeetBack system, both for maintaining a sense of agency over their movements as well as for systematic gait-
adaptation in response to the remapped, self-paced, rhythmic feedback.

Keywords  Sense of agency, Locomotion, Tactile feedback, Motor awareness, Remapped touch, Human-machine-
interaction
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nor do they result in a consciously “desired outcome” 
[19]. For instance, we may adjust our posture after being 
stationary for an extended period of time, we may shift 
our weight to maintain our balance, or we may just be 
walking without an immediate target or particular goal, 
in the sense of a physical location. At the same time, 
we are in control of these actions and perceive them as 
our own; we perceive a sense of agency (SoA) for these 
actions [8].

Nonetheless, mirroring research on human sensorimo-
tor control, SoA research has predominantly focused on 
brief upper-limb movements directed at specific target 
locations [20–26]. By introducing angular biases in visual 
feedback such studies have outlined how accurately par-
ticipants can monitor their movements. We refer to this 
insight into our on-going movement as Motor Awareness 
(MA). Studies such as these have reliably reported that 
MA is limited. Movement feedback with angular devia-
tions of 6.5°-15° is thus judged to not be deviated, even as 
participants subconsciously perform motor corrections 
[20, 23, 27, 28]. This limit of MA, constitutes an impor-
tant aspect of our sense of agency in relation to senso-
rimotor control. It complements other aspects such as 
ownership over an action (“I am performing this action”), 
and action intentionality (“This is the action I planned.”).

Next to spatial deviations, studies that provided tem-
porally manipulated visual feedback (hand movements) 
demonstrated that MA is further limited to mismatches 
delayed by more than150-200ms [20, 23, 25]. This line of 
research is often extended to mediated action outcomes 
such as the occurrence of a tone after a button-press 
[29–32], an approach further applied to investigate vol-
untary action and intention [33–35]. These studies thus 
investigated SoA by focusing on the outcome of mediated 
actions rather than conscious monitoring of the underly-
ing movement itself (MA). Any judgment at the end of 
such a trial may therefore be skewed by the outcome or 
in some cases even be revised based on altered feedback 
[36].

Motor awareness for locomotion
A complementary approach to studying SoA via MA has 
consequently been to focus on continuous and partially 
automated movements such as drawing [28, 37, 38], loco-
motion [39–44], or even respiration [45–49]. Rather than 
relying on the outcome of the motor task these studies 
focus on the level of conscious access that participants 
have for their movements. The spatiotemporal thresholds 
reported in these studies, that is, the psychometrically 
determined point of subjective equality where 50% of the 
deviated or delayed trials are judged to be veridical, are 
comparable to those of goal-directed tasks (within the 
range of 150-200ms) [42, 44]. In the case of locomotion, 
which is cyclic, not usually immediately goal-directed, 

and generally considered a highly automatic and uncon-
scious action [50, 51], participants not only showed high 
MA for real-time trials but also in trials were the feed-
back was delayed by a full step-cycle and therefore “re-
synchronised”. For auditory feedback, this high MA was 
also reported in the case of delays of half a step-cycle, 
even though this feedback was left-right reversed. Partic-
ipants would hear a lateralized left heel-strike at the time 
of the actual right heel-strike and vice versa, indicating 
the importance of temporal information. This applies to 
both gait-awareness and gait-regulation: participants in 
such studies unconsciously and automatically adapted 
their movements depending on the spatial or temporal 
mismatch in the feedback [42, 44]. As discussed later this 
may also be linked to syncopation between the rhythm 
of the actual versus the feedback walking patterns [52]. 
Unlike for the aforementioned goal-directed movements, 
where such a compensation is required to complete 
the task, adaptation in the continuous task is neither 
required nor does it affect the outcome of the task, dem-
onstrating that gait-related feedback may automatically 
be integrated in feed-forward motor control and poten-
tially targeted for neurorehabilitation and re-education.

The FeetBack system
While prior studies using auditory and visual stimuli have 
thus delineated important aspects of MA for locomo-
tion, arguably the most fundamental consequence of our 
movements are proprioceptive [53] and tactile in nature 
[54], such as ground reaction forces encountered at each 
heel-strike. To quantify the integration of tactile feed-
back to participants’ SoA we here investigated MA for 
remapped tactile feedback. To this aim, we developed the 
FeetBack system, a vibrotactile system that provides non-
invasive, step-related, remapped feedback during free-
walking onto the back of the wearer, Fig. 1. We adapted 
previous paradigms for conscious gait monitoring via 
auditory [42] and visual [44] cues to touch feedback dur-
ing walking. This wearable, untethered tactile remapping 
system allowed us to introduce a specific range of tem-
poral delays between participants’ actual, on-going foot-
steps and step-related tactile cues provided onto the skin 
of their back [10, 11]. We hypothesised to observe sys-
tematic modulation in MA depending on the delay, with 
strongest MA ratings for both real-time feedback, as well 
as feedback with delays closest to the duration of the par-
ticipants gait-cycle (re-synchronised feedback). We were 
further interested to see if this would evoke a systematic 
modulation of participants’ walking speed as a function 
of temporal delay as described by [42] and [44], demon-
strating the effect of cognetic interfaces on the robot-
controlled bodily action-perception cycle [55].
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Methods
Participants
A total of 29 healthy participants (18 female) with nor-
mal or corrected-to-normal hearing and vision, ranging 
in age from 21 to 36years (M = 26.86y, SD = 4.6y), were 
recruited in the experiment. They were all right-handed 
with no history of known orthopaedic, metabolic, or 
neurological impairment or painful condition that might 
alter walking. They did not report having scar-tissue on 
the back that could have influenced sensitivity to the tac-
tile stimuli. All participants were naïve to the purpose 
of the study and gave written informed consent before 

participating in the experiment. The study protocol was 
approved by the local ethical committee.

FeetBack system
We remapped somatosensory information from the 
heel-strikes of participants, walking over-ground at their 
preferred speed, onto the surface of their back using 
the FeetBack system (see Fig. 1). To this end, two linear 
arrays of vibrators were mounted on the sides of the back, 
each remapping heel-strike and footfall of the ipsilateral 
leg. We used vibrotactile apparent movement to induce 
a movement sensation on the back [56], similar to the 

Fig. 1  FeetBack system on the user and its components. FeetBack system remaps the foot rolling sensation under the user’s feet (lateralized feedback on 
the stance) onto the skin of the back. It includes two main parts: a wearable gait measurement system and a torso-worn vibrotactile display. The wearable 
gait measurement system detects the user’s step. It consists of pressure-sensitive insoles under the user’s feet, two ankle boxes, and the main control 
board attached to the participants’ lower back. The two force-sensitive sensors that are located at the heel (specified with dashed circles) were used to de-
tect heel-strike. The vibrotactile display provides moving sensations (i.e., VAM) on the participant’s back and includes two vertical vibrator arrays attached 
to foam, a torso-worn vest, and the controller board. Feedback on the stance was provided from down to up (solid black arrows)
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heel-strike pattern. VAM can be invoked through acti-
vating two or more vibrators, sequentially with specific 
timing parameters, namely duration of stimuli (DOS, per 
vibrator) and stimuli onset asynchrony (OA, between 
two vibrators). As a result, the discrete stimulation is 
perceived as if moving continuously from one position to 
another [57, 58]. The intrinsic delay of the system, from 
detecting the heel-strike to providing tactile feedback, 
was 60ms.

A pilot study with N = 5 participants was conducted to 
I) determine appropriate OA and DOS parameters that 
would induce VAM with the FeetBack system and ii) 
select an appropriate VAM profile. VAM profiles were 
evaluated in a 2 × 2 design comparing the phase of the 
gait-cycle (VAM during stance-phase vs. swing-phase 
) and the perceived VAM direction (upward vs. down-
ward). Participants reported that the upward VAM 
presented a better remapped experience of the natural 
heel-strike and stance phase. VAM duration, i.e., the time 
of presenting the VAM with each linear array of vibra-
tors, was fixed at 405ms, such that stimulation stopped 
prior to the toe-off and swing phase. This results from 
summing the DOS across the four vibrators and sub-
tracting the three overlaps (the difference between DOS 
and OA). This value was fixed as the VAM could not be 
calculated for each step in real-time and would further 
introduce a step-to-step variability that could interact 
with the main independent variable, the temporal delay. 
Based on this study, VAM timing parameters were set to 
DOS = 150ms and OA = 85ms.

Wearable gait measurement system
Pressure-sensitive insoles were used to measure the 
stride time, defined as the time elapsed between two 
consecutive heel-strikes of the same foot (HD-FSR 
002 by IEE S.A., Contern, Luxembourg.; Fig.  1). Each 
insole contained eight force-sensitive resistors (loca-
tions: 2 at the heel, 1 at lateral mid-foot, 3 at the ball of 
the foot, 2 in the front) capable of recording a pressure 
range from 100mbar to 6 bar. Pressure insoles were pro-
vided in two sizes (Medium and large). Changes in pres-
sure, represented by changes in resistance were read out 
by two boxes mounted to the ankles and containing the 
electronics (one Wheatstone Bridge per sensor, and an 
AD converter). Pressure data is sent to the main box, 
mounted on the back, using SPI (Serial Peripheral Inter-
face) through a shielded cable.

The mainboard served as the central computing unit, 
collected all sensor data and communicated with the 
host PC through Wi-Fi (receive/send; sampling time of 
10 msec). It included a BeagleBone Black (BBB, a sin-
gle-board computer, Beagle-Board.org Foundation), an 
Inertial Measurement Unit to record acceleration and 
gyroscope information (not used in the current study), a 

WiFi module (TP-LINK WLAN-N-USB adapter) and a 
battery (power bank, 3000 mAh) making the system fully 
portable.

Torso-worn vibrotactile display.
To provide VAM on the participants’ back, two verti-

cal arrays of coin-shaped, eccentric rotating mass (ERM) 
vibrators (310-003, Precision MicroDrive; body diam-
eter: 10  mm; body length: 3.4  mm; weight: 1.1 gr) were 
attached to a 20  mm-thick foam (Softpur polyurethane 
foam) with a horizontal distance of 110 mm using snap 
fasteners (see Fig.  1). There were four vibrators in each 
array (inter-tactor distance of 40  mm). Fasteners were 
respectively glued to vibrators and foam. The vibrator 
foam was fixed to a fully elastic, posture-corrector brace 
using Velcro straps. The posture-corrector firmly keeps 
vibrators against the skin while allowing the user to move 
conveniently. The ERMs are controlled by a 5  V haptic 
motor driver (DRV2605, Texas Instruments), resulting in 
a vibration frequency of 175  Hz, and an acceleration of 
1.3G. Haptic drivers were controlled with an STM32F407 
microcontroller, connected to the host PC using a Blue-
tooth module (HC-05). The controller board (Fig. 1) can 
be fully portable (battery-powered) or tethered for more 
extended studies.

A customized GUI was implemented in the Qt plat-
form, a free and open-source platform, to provide a con-
venient interface for controlling the experiment. The 
GUI received pressure data from the gait measurement 
computing units via the WiFi connection and provided 
live plotting of data together with other functionalities 
allowing the experimenter to monitor the ongoing study 
in real-time. It further allowed adjusting vibrator param-
eters (e.g., intensity, DOS, OA) and sending commands 
to the vibrotactile display for presenting VAM stimuli.

Paradigm
The experiment was conducted using a within-partici-
pants repeated measures design. As illustrated in Fig. 2, 
there were two baseline blocks: prior to (pre-baseline: no 
tactile feedback, BPre), and after the intervention (post-
baseline: no tactile feedback, BPost). Familiarization and 
pre-baseline blocks allowed us to establish points of ref-
erence to calculate the stride time alterations that were 
used in the intervention. The intervention consisted of 
trials with non-delayed and delayed feedback (i.e., delay 
as a with-in participant variable), including eleven levels 
of delay (ranging from 0ms to 1500 ms at increments of 
150 ms). We also included catch trials that consisted of a 
noisy tactile sensation to assess the extent to which par-
ticipants responded to perceived tactile feedback on their 
back rather than using other response strategies. Each 
condition was repeated ten times resulting in a total of 
120 trials per participant. All delay conditions were pre-
sented randomly during the intervention, in a total of 
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four blocks. MA was assessed at the end of each trial, and 
participants were asked to respond (“yes,” “no”). Based on 
previous work [42, 44], we asked the participants: “Did 
the feedback you felt on your back exactly correspond 
to the walking you just performed?”. The ratio of “yes” 
responses, given via button press at the end of each trial, 
was analyzed and reported. To capture any alterations in 
participants’ walking pattern, influenced by the differ-
ent feedback conditions, participants’ stride time values 
were recorded. We carried out a post-baseline condition 
to assess whether there was any influence of the interven-
tion on subjects’ gait (e.g., habituation, fatigue, etc.) that 
persisted beyond the experimental conditions.

Procedure
The experimental procedure is illustrated in Fig. 2. After 
providing informed consent, participants put on a fitted 
T-shirt, the actuated vest, and the wearable gait measure-
ment system. Three different sizes (37, 40, 43 EU size) 
of the same brand shoes, including the corresponding 
size shoe soles (M/L), were provided. Participants also 
wore occluding eyewear (SKLZ Court Vision Basketball 
Dribbling Goggles), preventing them from seeing their 

legs while walking. In addition, participants received 
white noise through noise-canceling headphones (WH-
1000XM3, Sony) to attenuate potentially distracting 
ambient sounds and to mask any acoustic cues that might 
be related to activation of vibrators or their foot-steps. 
A single or multiple beeps indicated the start and end of 
each block respectively, both for baseline and trial blocks.

After donning the experimental equipment, partici-
pants were asked to walk on a predefined rectangular 
walking path of 4 × 20  m (marked on the floor with red 
tape) in a large open space for as many iterations as they 
wanted, but at least one full turn. This allowed partici-
pants to habituate to the experimental setup and walking 
path. We also checked whether pressure data from the 
foot soles were correctly acquired and recorded by the 
software at this time. Participants were instructed to walk 
(counterclockwise) at their preferred speed throughout 
the whole experiment (as if they were “taking a stroll 
along a foot-path”). They were asked to maintain their 
walking speed through turns as much as possible.

In the first of two baseline blocks (BPre; see Fig. 2), par-
ticipants were asked to complete one full turn around the 
rectangular path. Next they completed a Familiarization 

Fig. 2  FeetBack Stimulation and Experimental Protocol. (top left to right) The system logs a heel-strike when the force-sensitive sensor crosses an indi-
vidualized threshold. It subsequently triggers the vibrotactile apparent movement stimulation on the corresponding side of the back, either in real-time 
or with an experimental delay. Participants walked along a 20 m by 4 m rectangle, so that they could complete one trial while walking along one of the 
longer sides. (lower left to right) To begin with, participants were asked to walk freely, at their preferred speed, so that baseline walking characteristics 
could be determined (BPRE). Subsequently, participants wore the FeetBack system, personalized to the baseline gait characteristics, and received real-time 
tactile feedback about their on-going movements, triggered by each heel-strike (F := Familiarization). The main experiment was broken into four blocks 
(Intervention). Here, participants had to complete individual trials in which feedback was presented either in real-time (60 ms system delay) or randomly 
delayed by up to 1,500 ms. After each trial, participants reported their Motor Awareness by replying to the Yes/No forced-choice question: “Did the feed-
back you felt on your back exactly correspond to the walking you just performed?”

 



Page 7 of 14Jouybari et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:65 

block (see Fig.  2), where they received real-time tactile 
feedback while walking for one loop. This was followed 
by a training block and the main experimental block. 
Finally, a second baseline block was completed (BPost).

Trials in the training block and in the main experi-
mental block lasted 7  s, resulting in an average of 6.3 
step-cycles (± 0.7 steps; SD) per trial. To minimize any 
potential effect of turning on the stride time, participants 
were instructed to start each trial when they started 
walking down the length of the space by pressing the 
start button, such that they could finish each trial in a 
single straight without turning. Training lasted approxi-
mately 5  min, including three different delays of zero, 
300 ms, and 600 ms, each repeated three times. In this 
way, participants familiarized themselves with the task 
and subsequent question, which was answered via two 

response buttons. The main experimental block was split 
into four sub-blocks between which participants had the 
opportunity to be seated and take a drink. At the end 
of the experiment, participants were asked to comment 
freely on their experience and the experiment (debriefing; 
Fig. 2).

Analysis
Motor awareness
We computed MA for each delay as the ratio of “yes”-
responses over all trials. Participants that responded 
“yes” to three catch trials or gave “yes” responses for 
more than 90% of highly out-of-phase trials (e.g., 1/2 
cycle delay) were excluded (3 participants). A total of 26 
participants (17 female, aged between 22 and 36 years, 

Fig. 3  Motor Awareness judgments. (a) MA as a function of delay. ND corresponds to non-delayed trials, HD to a mismatch of a half-cycle step, and FD to 
a full step cycle. The vertical line indicates the average single step and full step-cycle, with their standard deviation underlaid in grey. The cosine function 
(dashed line) confirms the regularity of MA modulation (y-axis) as a function of the delay (x-axis). Black circles show the population’s mean MA ratings. Par-
ticipants self-attributed the majority of trials for temporally synchronous feedback (ND, FD). MA judgments decreased with increasing delays until 600ms, 
which correspond to a half-step cycle delay. At HD trials, participants receive tactile feedback left-right reversed, resulting in the lowest self-attribution 
ratings. The boxplot of MA judgment across delays (median ± 1.5 interquartile range whiskers, 25th to 75th percentile range, and outliers). Boxplots indi-
cate higher intersubjective variabilities for trials that are neither temporally nor spatially congruent. (b) Temporal thresholds were determined by fitting a 
cumulative Gaussian (cf. Data Analysis). The temporal threshold for remapped tactile walking agency was estimated as 378ms
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mean = 27 years, SD = 4.5 years) were thus inluded in the 
analysis.

A sub-analysis determined the psychometric thresh-
olds, that is the point of subjective equality, indicating 
the delay at which a participant would respond “yes” in 
50% of cases, based on trials from 0ms to 600ms delays. 
Thresholds for six participants could not be extracted. 
Two had MA ratings of just 50% (yes responses) for non-
delayed feedback, and four never rejected more than 50% 
(no responses) for delays up to 600ms such that a psycho-
metric function could not be fit to the data. Hence, tem-
poral MA threshold are reported in the results section 
for 20 participants.

Gait parameters
Each gait cycle started with the heel strike as detected 
by the two force-sensitive resistors located at the heel 
(Fig.  1, specified with dashed circles) using a personal-
ized threshold. The threshold was set manually based on 
a preliminary recording of the participants gait. Stride-
times were calculated as the time interval between two 
successive heel strikes of the same foot. Stride-time 
was separately calculated for each leg and only com-
plete cycles (for each leg) were included in the average 
for each trial. Cycles shorter than 900ms or longer than 
1500ms were excluded [59]. Stride-time calculation was 
processed online via the GUI and recorded for statisti-
cal analysis. The average stride-time for the left and right 
leg was employed as each trial’s stride time for the final 
analysis. We excluded trials with a stride time that devi-
ated > 3 SD from the median (Median Absolute Deviation 
criteria with the factor of 3 [60]). On average, only 0.73 of 
110 trials (per participant) were rejected.

Moreover, to compare stride time alterations in base-
line and intervention blocks, mean stride time (MST) and 
the stride time coefficient of variation (CVST; i.e., the 
ratio of the standard deviation over the absolute mean) 
were calculated for each individual participant, across 
blocks. In order to diminish between-participants vari-
ability, stride time deviations (i.e., the difference between 
the average stride time of an individual trial and the aver-
age stride time during the intervention for each partici-
pant) were used to assess stride time modulation in the 
intervention session.

Statistical analysis
Analyses were performed in either JASP [61] and R [62] 
running in the RStudio environment. The normality of 
the residuals together with linearity and homogeneity of 
variance was checked. Repeated-measures ANOVA were 
conducted for MA and stride time deviation data, with 
Delay as independent variable (11 levels). Posthoc com-
parisons were conducted using Tukey’s honest significant 
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difference test (Tukey HSD). Significance was set at 
p < 0.05.

An rmANOVA was performed to assess differences 
in MST and CVST between Blocks (BPre, familiarization, 
intervention, BPost). We further examined the effect of 
presenting tactile feedback on gait parameters by col-
lapsing data into feedback (including familiarization and 
intervention blocks) versus no-feedback (including BPre, 
and BPost blocks) groups. A simple paired t-test was used 
to assess the overall effect of tactile feedback compared 
to no tactile feedback.

Nonlinear regressions function were used to fit har-
monic function to both MA and stride time deviation 
data, in R (nls(); nonlinear least squares) and determine 
the coefficients of the parameters in the model (MA rat-
ing: cosine function; stride time deviation: sine function). 
The linear and nonlinear models for MA and stride time 
deviation data were compared in R with ANOVA, using 
Aikake and Bayes Information Criteria (AIC and BIC, 
respectively) [63, 64].

Temporal thresholds were determined by fitting a 
cumulative Gaussian to the MA responses for trials with 
0-ms to 600-ms delays with the published psignifit tool-
box [65, 66] for MATLAB (MathWorks, Natick, MA). 
This toolbox enforces bootstrapping algorithms and 
weighs the individual data points based on the number of 
valid trials per stimulus intensity. All thresholds reported 
here reflect the 50% point of subjective equality.

Results
Motor awareness
Statistical analysis showed that MA ratings were sig-
nificantly modulated as a function of delay (main effect 
of Delay: F(4.00, 100.04) = 16.08, p < 0.001, Greenhouse-
Geisser correction applied). A cosine model showed a 
systematic modulation of MA as a function of the delay 
(Fig.  3a). The cosine model had a significantly lower 
residual sum of squares (i.e., the variability not explained 
by the model; F(2, 282) = 51, p < 0.001) compared to the 
linear model (38% reduction). Using BIC and AIC, we 
compared the goodness of fit for the linear and nonlin-
ear models and found smaller AIC and BIC for the cosine 
model (AIC = 152, BIC = 170.9) compared to the linear 
model (AIC = 236, BIC = 247), showing that the cosine 
model is better at capturing the MA rating data. As illus-
trated in Fig.  3a, participants gave high MA ratings of 
85 ± 3% for non-delayed trials (ND), in which step-related 
tactile feedback was provided close to real-time with 
respect to their actual stepping (60ms intrinsic delay). 
As hypothesized, self-attribution rapidly decreased with 
increasing delay.

We calculated a temporal threshold of 378 ± 239 ms 
(mean ± SE) (50% point of subjective equality; including 
the 60ms intrinsic delay; see Fig.  3b), so that for delays 

above this threshold, the majority of movements were 
judged to not correspond to the ongoing movement. The 
lowest self-attribution in MA was observed between 300-
900ms with the minimum at 600ms (22 ± 6%), which is 
close to the half-cycle delay (µ = 571ms). In these trials, 
the actual movement and the remapped-tactile sensa-
tion are maximally out of phase so that the feedback is 
left-right reversed concerning the leading leg and heel-
strike of the participant (i.e., left foot on ground and 
right foot providing feedback on the back). MA judg-
ments increased again for larger delays peaking in trials 
with 1050ms delay (1110ms with 60ms intrinsic delay) 
that matched the participants’ step-cycles (1144 ± 9.1ms). 
Thus, MA for trials with a full step-cycle delay (FD) was 
high (78 ± 4%) and approximated the MA for ND trials. A 
Bayesian t-test provides evidence that MA for ND (0ms) 
and FD (1050ms) trials was comparable (MAND≠MAFD, 
BF10 = 0.241).

Gait
As listed in Table 1 all common temporal gait character-
istics could be captured with the FeetBack system. Nor-
malised pressure profiles are illustrated in Fig. 4a. For the 
main intervention session, only the stride-time data were 
analysed in the current cohort, Fig.  4 panels B-D. Par-
ticipants’ gait period was, on average, 1146 ± 98ms (range: 
986-1379ms), compatible with data in healthy partici-
pants [59] and data in a comparable task using auditory 
feedback [42]. While we did not observe a significant 
main effect of delay on stride-time deviation (F(5.37, 
134.25) = 1.81, p = 0.11), a sinusoidal model of the stride 
time deviation has a significantly lower residual sum of 
square (F(2, 282) = 4.53, p = 0.01) compared to a linear 
model. This reduction is about 3% compared to the lin-
ear model. We further used the BIC and AIC to compare 
the goodness of fit for the linear and nonlinear models. 
We found slightly smaller AIC and BIC for the sinusoi-
dal model (AIC = 2105.46, BIC = 2123.74) compared to 
the linear model (AIC = 2110.52, BIC = 2121.49), showing 
that the sinusoidal model was only minimally better at 
capturing the stride time deviation data. As illustrated in 
Fig. 4B, participants walked slightly faster than the aver-
age for trials with rhythmically synchronous feedback 
(i.e., ND, HD, and FD trials) and slower for those neither 
temporally nor spatially congruent (e.g., ¼ cycle, ¾ cycle, 
5/4 cycle). Post-hoc analysis showed that stride time 
deviation remained stable in these ND, HD and FD tri-
als (ND-HD: t = 0.59, p = 1; ND-FD: t = 0.34, p = 1; HD-FD: 
t = 0.24, p = 1).

In order to control for adaptation or carry-over effects 
of the vibration feedback on the walking characteris-
tics we compared stride time between the pre and post 
baseline blocks (MST, CVST). Statistical analysis showed 
that MST and CVST did not significantly differ between 
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feedback and no-feedback blocks (MST: t(51) = 0.62, 
p = 0.54; CVST: t(51) = 0.54, p = 0.58), Fig. 4, panels C and 
D. Finally, we did not observe any significant correlations 
between participants’ overall MA ratings and their aver-
age walking characteristics, including stride-time, stride-
time deviation, or coefficient of variance (all p > 0.336).

Discussion
In the current study we demonstrated that participants 
perceive tactile feedback, generated from each footfall 
but remapped to their own back, as corresponding to 
their own movement. This correspondence decreased 
when temporal delays were introduced up to the point 
when the feedback appeared left-right reversed as dem-
onstrated in participants’ subjective reports of motor 
awareness. Further increasing the delay led to a re-
synchronisation with the prior gait-cycle such that the 
feedback was again perceived to correspond to their 
own, on-going movement. We discuss our findings with 
respect to its implications for motor-neurorehabilitation.

Motor awareness
While tactile feedback has been used in locomotor reha-
bilitation settings these prior studies have not system-
atically investigated to what extent participants perceive 
such feedback to be generated by, or correspond to their 

own, on-going movements. The focus was usually on 
investigating the effects of the feedback on spatiotem-
poral gait parameters. However, the perceived corre-
spondence of such haptically augmented information 
may modulate to what extent individuals integrate feed-
back into their sensorimotor loop in a predictive man-
ner [7–9]. In turn, this may contribute to gait adaptation, 
rehabilitation, and transfer-of-learning to activities of 
daily living. This latter point is particularly relevant with 
respect to understanding under what conditions move-
ment adaptations observed under training conditions 
transfer to natural walking [67, 68] and how they transfer 
between effectors [69]. Corroborating previous findings 
in studies using visual and auditory gait-feedback [42, 
44], we observed that participants perceived both syn-
chronous as well as re-synchronised feedback as corre-
sponding to their own movement. As reported for visual 
feedback, correct feedback lateralization mattered in the 
present conditions as temporally synchronous but left-
right reversed trials were not perceived to correspond 
to the ongoing movement, but correctly as maximally 
out-of-phase.

Do the natural heel-strike and the remapped tactile 
feedback complement each other, or do they create an 
additional multisensory conflict? In the present study, 
we observed pronounced individual differences in MA 

Fig. 4  Gait Parameters. (A) Pressure Profiles. The insole data provide information about the pressure applied at the heel and front-foot and are used to 
normalize the gait-cycle. The solid blue line indicates the right heel sensor, which starts and ends the gait-cycle once a personalized threshold is crossed. 
The dotted red line is used to calculate the toe-off event of the right foot using the toe-sensor. (B) Gait adaptation. ND corresponds to non-delayed trials, 
HD to a mismatch of a half step-cycle, and FD to a full step-cycle. A sinusoidal function (red line) was fitted to the data (y-axis: stride time deviation, x-axis: 
delay), showing that the variation of stride time deviation is weakly systematic. Participants tend to walk slower for trials that are neither temporally nor 
spatially congruent. Grey lines in the background represent each individual’s data. (C) The violin plots indicate the distribution of the participants’ mean 
stride time (MST) for three baselines (BPre, BPost, and familiarization) and the intervention (Interv.) session. Participants’ MST did not significantly change 
across different blocks. (D) Stride time coefficient of variation (CVST) for three baselines and the intervention block. While the CVST seems to be higher in 
intervention, no significant difference was observed across blocks
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ratings. Accordingly, MA thresholds were higher (378 
ms) and noisier (i.e., higher variability; SD = 239 ms) for 
remapped tactile feedback compared to those reported in 
the auditory (∼ 200 ms) and visual (∼ 210 ms) gait para-
digms (and auditory or visual agency studies in general; 
for review, see [70]). In prior studies, naturally occur-
ring visual and acoustic feedback is blocked out either 
by using white noise or by obstructing the view of the 
lower limbs. In other words, feedback is substituted with 
experimentally controlled feedback in the same modal-
ity and relative location. In the current study, partici-
pants still perceived the actual ground reaction forces 
at each foot-strike, as it was not possible to remove 
the physical somatosensory action consequence. This 
results in an additional intra-modal (tactile) but spatially 
remapped conflict between touch on the foot sole and 
the back (missing in visual and auditory gait agency stud-
ies). Although participants were instructed to base their 
responses on the remapped tactile sensations on their 
back, their actual foot-strike may have still interfered 
with the present MA judgments. In terms of the central 
monitoring framework [23], which has been argued to 
depend on a comparison of internal representations and 
predictions about our movements with the actual reaf-
ferent sensory information (but also with our intended 
or desired state; see [19]), this corresponds to a strong 
conflict in the feedback source. Such uncertainty may 
additionally contribute to the higher temporal thresholds 
observed here along with potentially differing relative 
weighting of feedback cues [71].

Alternatively, two competing tactile sources may pres-
ent a cognitive load affecting both walking characteristics 
and MA. The effects of a secondary perceptual, motor, 
or cognitive task (dual tasking) on the control of posture 
and locomotion are well-documented (for review see [72] 
and [73]), and usually manifested in an increase in stride 
time and increased gait variability [74]. Along these lines, 
[18, 39] reported that cognitive loading, via an articulated 
backwards counting task, suppressed gait synchroniza-
tion and led to slower walking velocities during a gait 
ageny task. As discussed in these studies, the effect is 
most pronounced when the mismatch in the feedback is 
at its maximum. This suggests that resolving the tempo-
ral delay (or spatial deviation), as opposed to integrating 
the feedback appears to drive cognitive loading. In the 
current study, participants showed a tendency towards 
higher stride time variability and increased stride time 
when receiving remapped feedback (see Fig.  4c and 
d), although these differences did not reach statisti-
cal significance. In case of a clinical study, the effect of 
the remapped feedback should initially be evaluated by 
itself, as in the baseline condition here. This should pro-
vide an indication of the potential cognitive load and its 
effect on locomotor control. A comparison can then be 

made between walking without feedback, walking with 
synchronous feedback, and walking with systematically 
delayed feedback.

Limited gait adaptation
Unlike our hypothesis and unlike previous work [42, 44], 
we did not observe a clear modulation of gait param-
eters. Participants stride-times and variability remained 
stable across all conditions and temporal delays. Why did 
participants not synchronise to the delayed feedback as 
described for some earlier studies? While gait-synchro-
nisation has been previously observed, the effects are 
usually quite modest, particularly in healthy populations 
as in the current study. Our results are instead in line 
with studies on rhythmic stimulation, which reported 
no change in walking speed or cadence of healthy adults 
when they were asked to walk at their preferred pace 
[75]. Differences may further be due to the feedback 
modalities and stimulation parameters. Although MA 
thresholds are comparable across sensory modalities and 
even the effector (body part), our motor system is usu-
ally more sensitive to such differences [76]. For example, 
the sound generated by a heel-strike is temporally very 
discrete, whereas the tactile feedback continues through-
out the entire stance-phase for each leg. Accordingly, the 
short sound bursts used in [42] differ from the vibrotac-
tile apparent movement employed here. Such a rhyth-
mical feedback may cause participants that are walking 
in incidental syncopation [52], that is, out-of-synch or 
off-beat with respect to their feedback, to adapt their 
gait and synchronise to the auditory cue [77, 78]. As dis-
cussed in [78], an initially off-beat, syncopated pattern 
in rhythmic sensorimotor behaviour “progressively loses 
stability until at a critical value […] of approximately 
2Hz” where “the system undergoes a spontaneous tran-
sition to the synchronized pattern”. Such an automatic 
synchronization may be particularly relevant for human 
locomotion as the step frequency is usually around 2 Hz 
(1.75 Hz in the current study).

While both auditory and tactile approaches approxi-
mate an ecologically valid locomotor cue, it remains to be 
evaluated if a similarly short burst of tactile feedback may 
improve gait adaptation because of the increased tempo-
ral acuity, although it may be detrimental to the motor 
awareness and perceived correspondence of the feed-
back. This has for example been demonstrated for bidi-
rectional (prosthetic) interfaces, where discrete tactile 
stimuli can dominate a multisensory percept, for better 
or worse [79], but that a biomimetic approach, mimick-
ing natural feedback, and as proposed with our vibrotac-
tile apparent movement here, improves aspects such as 
grasping performance and haptic perception [80]. The 
dampened synchronization reported here may also be 
related to the large inter-individual differences observed 
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for MA. As discussed, this may be partially due to the 
fact that there are two tactile cues, the actual heel-strike 
and the remapped heel-strike. These cues can either 
correspond, as for (re-)synchronized feedback, or be in 
conflict as in the case of intermediate temporal delays 
and thus potentially interfere with adaptation. While 
the primary focus of the current study was to investigate 
MA, the setup could be used to target gait adaptation 
by increasing trial duration on a longer walking track. 
Furthermore, vibrating insoles could be used to blur the 
impact of the natural heel-strike, potentially shifting reli-
ance towards the experimental, remapped feedback [71, 
81]. Finally, a biomimetic approach may be compared to 
discrete tactile stimulation indicating heel-strike and toe-
off events.

Clinical application
Feedback in the form of external sensory cueing (i.e., 
auditory or visual) has extensively been investigated in 
PD and linked to improved gait characteristics (cadence, 
velocity, and stride-length) [82, 83]. This approach has 
been particularly promising with respect to tackling 
freezing-of-gait. Yet, challenges remain to demonstrate 
long-term consolidation of such advantages [84]. As 
touched upon in the introduction, some of these feed-
back systems have demonstrated that rhythmic tactile 
stimulation during locomotion may similarly improve 
gait characteristics in PD [12], stroke [13], and hemi- or 
paraplegic patients [14], as well as lower-leg amputees 
[15]. As our system can apply temporal delays that are 
individually adapted for each leg, it may also be used to 
investigate and modulate gait-asymmetry [85]. In the 
case of PD, gait impairments have been linked to an 
over-reliance on visual information [86], such that tac-
tile feedback may provide a more salient cue immediately 
relevant to the on-going movement. Given our initial 
results, we aim to evaluate the FeetBack system in clinical 
populations and evaluate if and how their motor aware-
ness may differ from healthy controls and if the the sys-
tem can improve both their motor awareness and their 
gait by augmenting available [87, 88] or substituting lack-
ing sensory information [89]. Furthermore, observing a 
relationship between the patients’ motor awareness, that 
is the perceived correspondence between actual and aug-
mented tactile feedback, and their gait parameters may 
provide additional information on the causality between 
perception and action in sensorimotor adaptation.

Conclusion
The present study investigated the contribution of hap-
tic feedback on motor awareness and locomotor con-
trol in healthy participants. We demonstrated that 
remapped haptic feedback modulates MA in a system-
atic, predictable manner. Participants reported highest 

self-attribution for synchronized and re-synchronised 
trials and gave lowest ratings for trials with left-right 
reversed feedback, underlining the importance for lat-
eralization. Although our findings are generally in line 
with previous gait agency studies, we observed a higher 
intersubjective variability in motor awareness and limited 
gait adaptation to the delayed remapped haptic feedback. 
Nonetheless, our results demonstrate a clear potential for 
using the FeetBack system to enhance gait awareness in 
patients with peripheral or central neuropathies as well 
as patients presenting sensorimotor symptoms in neuro-
degenerative diseases; populations that also stand to gain 
the most out of the feedback to normalize their walking 
characteristics.
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