Skip to main content

Table 6 Decomposition accuracy of MT-DCNN for different window sizes and step sizes

From: A multi-label deep residual shrinkage network for high-density surface electromyography decomposition in real-time

Window size

(data points)

Step size

(data points)

Precision

Sensitivity

F1-score

Correctly identified MU counts

20

10

0.66 ± 0.16

0.45 ± 0.16

0.51 ± 0.17

0.92 ± 0.16

20

0.51 ± 0.19

0.29 ± 0.17

0.35 ± 0.19

0.13 ± 0.44

30

0.36 ± 0.21

0.19 ± 0.15

0.23 ± 0.17

0.02 ± 0.14

40

0.29 ± 0.20

0.13 ± 0.12

0.16 ± 0.15

0.00 ± 0.00

50

0.23 ± 0.18

0.10 ± 0.09

0.12 ± 0.12

0.00 ± 0.00

60

10

0.93 ± 0.05

0.86 ± 0.06

0.89 ± 0.05

5.46 ± 5.07

20

0.88 ± 0.07

0.79 ± 0.09

0.83 ± 0.08

3.85 ± 4.17

30

0.79 ± 0.12

0.70 ± 0.13

0.74 ± 0.12

2.60 ± 3.44

40

0.70 ± 0.17

0.60 ± 0.18

0.64 ± 0.18

1.56 ± 2.32

50

0.63 ± 0.16

0.53 ± 0.18

0.56 ± 0.18

0.79 ± 1.44

100

10

0.95 ± 0.05

0.90 ± 0.05

0.92 ± 0.05

8.96 ± 6.89

20

0.92 ± 0.06

0.86 ± 0.07

0.89 ± 0.06

6.50 ± 5.94

30

0.86 ± 0.09

0.80 ± 0.10

0.83 ± 0.09

4.44 ± 4.68

40

0.80 ± 0.12

0.76 ± 0.13

0.77 ± 0.13

3.63 ± 3.94

50

0.74 ± 0.13

0.72 ± 0.15

0.72 ± 0.14

2.79 ± 3.22

140

10

0.96 ± 0.04

0.92 ± 0.04

0.94 ± 0.04

11.90 ± 8.44

20

0.93 ± 0.05

0.90 ± 0.06

0.91 ± 0.05

9.69 ± 7.14

30

0.88 ± 0.08

0.86 ± 0.09

0.87 ± 0.08

7.73 ± 6.41

40

0.83 ± 0.11

0.83 ± 0.13

0.83 ± 0.12

6.77 ± 5.40

50

0.79 ± 0.12

0.79 ± 0.16

0.78 ± 0.14

6.21 ± 5.31

  1. Values are expressed as mean ± standard deviation across 16 participants and 3 contraction intensities