Skip to main content

Table 5 Decomposition accuracy of ML-DCNN for different window sizes and step sizes

From: A multi-label deep residual shrinkage network for high-density surface electromyography decomposition in real-time

Window size

(data points)

Step size

(data points)

Precision

Sensitivity

F1-score

Correctly identified MU counts

20

10

0.71 ± 0.24

0.49 ± 0.32

0.53 ± 0.31

2.54 ± 3.96

20

0.72 ± 0.31

0.59 ± 0.40

0.60 ± 0.39

4.75 ± 6.55

30

0.67 ± 0.36

0.61 ± 0.42

0.62 ± 0.41

6.33 ± 8.57

40

0.78 ± 0.32

0.74 ± 0.34

0.75 ± 0.34

7.71 ± 9.41

50

0.87 ± 0.24

0.85 ± 0.28

0.85 ± 0.28

9.63 ± 9.70

60

10

0.91 ± 0.09

0.78 ± 0.22

0.81 ± 0.19

5.79 ± 5.66

20

0.88 ± 0.14

0.74 ± 0.31

0.77 ± 0.28

5.42 ± 5.79

30

0.86 ± 0.18

0.75 ± 0.31

0.77 ± 0.29

6.13 ± 6.86

40

0.87 ± 0.21

0.80 ± 0.33

0.81 ± 0.31

7.60 ± 7.60

50

0.89 ± 0.20

0.82 ± 0.31

0.83 ± 0.30

8.81 ± 8.64

100

10

0.92 ± 0.08

0.86 ± 0.20

0.87 ± 0.18

7.85 ± 6.05

20

0.91 ± 0.11

0.89 ± 0.13

0.89 ± 0.13

7.77 ± 6.69

30

0.93 ± 0.12

0.91 ± 0.17

0.91 ± 0.17

10.04 ± 7.49

40

0.95 ± 0.10

0.95 ± 0.12

0.95 ± 0.12

11.77 ± 7.99

50

0.98 ± 0.07

0.98 ± 0.06

0.97 ± 0.07

13.06 ± 7.91

140

10

0.95 ± 0.07

0.91 ± 0.19

0.91 ± 0.16

11.56 ± 7.51

20

0.98 ± 0.05

0.99 ± 0.03

0.98 ± 0.04

14.15 ± 7.87

30

0.98 ± 0.06

0.99 ± 0.04

0.98 ± 0.05

13.79 ± 8.14

40

0.99 ± 0.02

0.99 ± 0.03

0.99 ± 0.03

14.17 ± 8.38

50

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

14.71 ± 8.23

  1. Values are expressed as mean ± standard deviation across 16 participants and 3 contraction intensities