Skip to main content

Table 3 Classification results of predicting postintervention MCID participants using six machine learning methods with three types of datasets

From: Predicting upper limb motor recovery in subacute stroke patients via fNIRS-measured cerebral functional responses induced by robotic training

Model

Clinical Data Set

fNIRS Data Set

AUC

ACC

Sen

Spc

AUC

ACC

Sen

Spc

SVM

0.802 (0.095)

0.735 (0.085)

0.634 (0.247)

0.766 (0.109)

0.828 (0.086)

0.765 (0.089)

0.716 (0.195)

0.781 (0.102)

RF

0.752 (0.122)

0.745 (0.088)

0.431 (0.221)

0.843 (0.098)

0.661 (0.120)

0.709 (0.094)

0.376 (0.213)

0.813 (0.106)

ANN

0.803 (0.120)

0.757 (0.079)

0.502 (0.216)

0.836 (0.094)

0.773 (0.111)

0.735 (0.082)

0.521 (0.197)

0.803 (0.101)

LR

0.787 (0.102)

0.729 (0.098)

0.642 (0.233)

0.756 (0.122)

0.778 (0.093)

0.722 (0.092)

0.634 (0.182)

0.751 (0.118)

KNN

0.728 (0.104)

0.633 (0.111)

0.752 (0.215)

0.596 (0.133)

0.716 (0.112)

0.634 (0.105)

0.754 (0.175)

0.596 (0.129)

EN

0.763 (0.104)

0.687 (0.096)

0.654 (0.231)

0.698 (0.114)

0.762 (0.105)

0.713 (0.085)

0.711 (0.151)

0.715 (0.109)

Model

Clinical-fNIRS Data Set

    

AUC

ACC

Sen

Spc

    

SVM

0.849 (0.078)

0.805 (0.069)

0.764 (0.221)

0.818 (0.088)

    

RF

0.696 (0.114)

0.704 (0.102)

0.454 (0.221)

0.782 (0.119)

    

ANN

0.861 (0.087)

0.805 (0.082)

0.786 (0.218)

0.812 (0.098)

    

LR

0.823 (0.088)

0.783 (0.078)

0.692 (0.200)

0.813 (0.095)

    

KNN

0.717 (0.115)

0.615 (0.097)

0.794 (0.187)

0.564 (0.126)

    

EN

0.799 (0.101)

0.729 (0.089)

0.722 (0.019)

0.732 (0.109)

   Â